
V8.0 Copyright © 2021 CFB Software 1 of 21
www.astrobe.com

CFB Software

Astrobe

Oberon Programmers Guide
Astrobe for RISC5

This document is applicable to Astrobe for RISC5. It shows Oberon programmers how the
Astrobe implementation of Oberon differs from the standard Programming Language
Oberon report. It also clarifies the details of some features which are intentionally left
undefined by the report. Guidelines and examples of recommended Oberon coding
techniques are included.

V8.0 Copyright © 2021 CFB Software 2 of 21
www.astrobe.com

Astrobe
Oberon Programmers Guide

Table of Contents

1 Introduction ... 4

2 Data Types .. 4

2.1 BYTE .. 4

2.2 CHAR ... 5

2.3 INTEGER .. 5

2.4 REAL .. 5

2.5 SET ... 5

3 Extensions .. 6

3.1 Array of BYTE... 6

3.2 FOR loops .. 6

3.3 Built-in Procedures.. 7
3.3.1 BITS .. 7
3.3.2 BFI .. 7
3.3.3 BFX ... 8

3.4 Leaf Procedures .. 9

3.5 SYSTEM Procedures .. 10
3.5.1 PUT and GET with auto-increment / decrement ... 10
3.5.2 SYSTEM.VAL ... 10
3.5.3 SYSTEM.NULL ... 10

3.6 Interrupt Handlers .. 11

4 Restrictions ... 12

4.1 Constant declarations ... 12

4.2 Procedure Variables .. 12

4.3 Anonymous Pointer Types .. 12
4.3.1 Extensions .. 12
4.3.2 Self References .. 12

4.4 Export .. 12

4.5 PACK(x, e) .. 12

4.6 UNPK(x, e) ... 12

5 Implementation Size Limits .. 13

6 CASE Statements .. 14

6.1 Numeric CASE Statements .. 14

6.2 Numeric CASE Error Reporting .. 15

6.3 Type Extension CASE Statements ... 16

V8.0 Copyright © 2021 CFB Software 3 of 21
www.astrobe.com

7 Programming Conventions and Guidelines .. 17

7.1 Essentials ... 17
7.1.1 Precondition Checks .. 17
7.1.2 Global Variables ... 17
7.1.3 Function Procedures .. 17

7.2 Indentation ... 18

7.3 Semicolons .. 18

7.4 Dereferencing ... 19

7.5 Letter case ... 19

7.6 Names ... 19

7.7 White space .. 20

7.8 Alignment .. 20

7.9 Boolean Expressions ... 21

7.10 Acknowledgements ... 21

V8.0 Copyright © 2021 CFB Software 4 of 21
www.astrobe.com

1 Introduction

The RISC5 compiler included in Astrobe implements the Oberon language as defined in the
included report titled:

The Programming Language Oberon (Revision 1.10.2013 / 3.5.2016) by Niklaus Wirth.

This document applies to Astrobe for RISC5. It shows Oberon programmers how the Astrobe
implementation of Oberon differs from the standard Programming Language Oberon report.
It also clarifies the implementation-specific details of some features which are intentionally
left undefined by the report. Guidelines and examples of recommended Oberon coding
techniques are included.

2 Data Types

2.1 BYTE

The BYTE type is primarily intended to be used when transferring 8- and 16-bit data to and
from peripheral devices. Although BYTE variables can be used wherever an INTEGER variable
is allowed (except where noted here) INTEGERs should always be used unless there is a
compelling reason to do otherwise.

BYTE is an unsigned integer with a minimum value of 0 and a maximum value of 255.

BYTE variables are compatible with INTEGER variables in assignments, parameter passing
and as return values from procedures. No overflow checking is performed at runtime. The
following code could be used to trap runtime errors when assigning an integer value to a
BYTE variable:

PROCEDURE IntToByte(intVal: INTEGER): BYTE;
BEGIN
 ASSERT(LSR(intVal, 8) = 0);
 RETURN intVal
END IntToByte;

When using SYSTEM.PUT to store a value at a particular absolute memory location the type
of the variable passed to the SYSTEM.PUT function determines whether a store register byte
or store register word instruction is used to perform the transfer. Normally, if you specify a
numeric constant value, SYSTEM.PUT will use a word-sized transfer as it interprets the
constant as an INTEGER. If you want it to use a byte-sized transfer instead you should use a
character constant or BYTE variable, whichever you prefer:

 VAR
 addr: INTEGER;
 b: BYTE;
 ...
 BEGIN
 SYSTEM.PUT(addr, 0X);
 SYSTEM.PUT(addr, CHR(0));
 b := 0;
 SYSTEM.PUT(addr, b);
 ...

V8.0 Copyright © 2021 CFB Software 5 of 21
www.astrobe.com

2.2 CHAR

The characters of the Latin-1 set.

2.3 INTEGER

The range of valid INTEGER numbers is:

INTEGER = -2147483647 .. +2147483647

LONGINT is an alias for INTEGER.

2.4 REAL

The range of valid REAL numbers is:

REAL = -3.40282E+38 .. +3.40282E+38

LONGREAL is an alias for REAL.

2.5 SET

The sets of integers between 0 and 31.

V8.0 Copyright © 2021 CFB Software 6 of 21
www.astrobe.com

3 Extensions
The primary motive for introducing extensions to the Astrobe implementation of RISC5
Oberon is to simplify the task of porting Astrobe applications from other processors i.e. ARM
Cortex-M3, M4 and M7 which already have these features.

3.1 Array of BYTE

If the formal parameter is an array of bytes with a fixed size it can accept actual parameters
of any type whose size is the same number of bytes e.g.

TYPE
 Buffer = ARRAY 256 OF BYTE;
 IntArray = ARRAY 64 OF INTEGER;
 Data = ARRAY 12 OF INTEGER;

VAR
 ia: IntArray;
 d: Data;

PROCEDURE SendData(bytes: Buffer);
…
…
SendData(ia); (* OK *)
SendData(d); (*Error: incompatible parameters *)

3.2 FOR loops

The control variable in a FOR loop is a read-only variable in the body of the FOR loop. For
example:

FOR i := 0 TO 10 DO
 i := i – 1 (* Error: read-only *)
END;

Note that the limit of a FOR loop is evaluated on each iteration of the loop. It is the
programmer's responsibility to ensure that the limit is not modified during the execution of
the loop.

If the limit is a non-trivial function then it should be assigned to a local variable first. For
example:

strlen := Strings.Length(s);
FOR i := 0 TO strlen - 1 DO
 s[i] := CAP(s[i])
END;

V8.0 Copyright © 2021 CFB Software 7 of 21
www.astrobe.com

3.3 Built-in Procedures

3.3.1 BITS

PROCEDURE BITS(i: INTEGER): SET;

BITS takes an INTEGER parameter and returns a SET with the same bit pattern. It is a type
transfer function like ORD rather than a type conversion function.
By definition, the following expressions, where i is an INTEGER and s is a SET, are TRUE:

BITS(i) = SYSTEM.VAL(SET, i)
ORD(BITS(i)) = i
BITS(ORD(s)) = s

BITS is convenient to use in expressions which are a mixture of INTEGERs, masks and bit
fields.

Note that SYSTEM.VAL can still be used if you want compatibility with other Oberon
systems.

The following examples show the use of BITS with a constant value and the equivalent SET
constants:

BITS(0) = {}
BITS(1) = {0}
BITS(3) = {0, 1}
BITS(0FFFFFFFFH) = {0..31}

3.3.2 BFI

PROCEDURE BFI*(VAR word: INTEGER; msb, lsb, bitfield: INTEGER);

PROCEDURE BFI*(VAR word: INTEGER; bitNo, bitfield: INTEGER);

BFI updates a bitfield, i.e. just a portion of 32-bit word, with an INTEGER value. word is the
target variable and bitfield is the source data. msb and lsb are constant values. msb is the
most-significant bit and lsb is the least-significant bit of the bitfield.

If msb = lsb (i.e. only a single-bit is accessed) then the two parameters can be replaced by
the single bitNo.

Examples of its use can be seen in the realtime clock (RTC) library module. Clock data are
packed into a single word as follows:

No of Bits: 6 4 5 5 6 6

Bit Field: 31..26 25..22 21..17 16..12 11..6 5..0

Data: Year Month Day Hour Minute Second

e.g. the following statements update just the hours and minutes values stored in the
datetime variable dt; the seconds, day, month and year values remain unchanged:

BFI(dt, 11, 6, mins);
BFI(dt, 16, 12, hrs);

V8.0 Copyright © 2021 CFB Software 8 of 21
www.astrobe.com

3.3.3 BFX

PROCEDURE BFX(VAR word: INTEGER; msb, lsb): INTEGER;

PROCEDURE BFX(VAR word: INTEGER; bitNo: INTEGER): INTEGER;

BFX returns an unsigned bitfield, i.e. just a portion of 32-bit word, from an INTEGER value.
word is the source data. msb and lsb are constant values. msb is the most-significant bit and
lsb is the least-significant bit of the bitfield portion of the word.

If msb = lsb (i.e. only a single-bit is accessed) then the two parameters can be replaced by
the single bitNo.

Examples of its use can be seen in the realtime clock (RTC) library module. Clock data are
packed into a single word as follows:

No of Bits: 6 4 5 5 6 6

Bit Field: 31..26 25..22 21..17 16..12 11..6 5..0

Data: Year Month Day Hour Minute Second

e.g. the following statements extract just the month and year values from the datetime
variable dt:

 mm := BFX(dt, 25, 22);
 yy := BFX(dt, 31, 26);

V8.0 Copyright © 2021 CFB Software 9 of 21
www.astrobe.com

3.4 Leaf Procedures

The code that is generated by the Oberon compiler for procedure calls is efficient for most
normal purposes. On occasions where faster execution speed is required (e.g. for fast
interrupts) Leaf procedures can be used. These are identified by an asterisk in the procedure
header.

PROCEDURE* GetValue(VAR n: INTEGER);

Leaf procedures result in faster execution speed because the following runtime checks are
disabled:

 Array index bounds

 Invalid type guards

 Bad INTEGER divisors

 NIL pointers

Limitations of leaf procedures are:

 Procedures (other than standard and SYSTEM procedures) cannot be called from a
leaf procedure

 Some runtime errors go undetected

Although the standard procedures ODD, CHR etc. and SYSTEM procedures PUT, GET etc. look
like normal procedures they are implemented as inline code so they can be used in leaf
procedures.
The following examples illustrate the difference between an asterisk used to indicate that a
procedure is a leaf procedure and an asterisk used to indicate that the procedure is
exported:

PROCEDURE GetValue(VAR n: INTEGER); (* Private non-leaf procedure *)

PROCEDURE GetValue*(VAR n: INTEGER); (* Exported non-leaf procedure *)

PROCEDURE* GetValue(VAR n: INTEGER); (* Private leaf procedure *)

PROCEDURE* GetValue*(VAR n: INTEGER); (* Exported leaf procedure *)

V8.0 Copyright © 2021 CFB Software 10 of 21
www.astrobe.com

3.5 SYSTEM Procedures

3.5.1 PUT and GET with auto-increment / decrement

An optional integer constant parameter inc can be used with the functions SYSTEM.GET and
SYSTEM.PUT to automatically increment / decrement the value of the address of the
variable that is being accessed.

PROCEDURE GET*(address: INTEGER; VAR v: <any basic type>);

PROCEDURE GET*(VAR address: INTEGER; VAR v: <any basic type>; inc: INTEGER);

PROCEDURE PUT*(address: INTEGER; x: <any basic type>);

PROCEDURE PUT*(VAR address: INTEGER; x: <any basic type>; inc: INTEGER);

If inc is in the range 1..255 the address is incremented after the value is accessed. If inc is in
the range -1..-255 the address is decremented before the value is accessed. Typical values
for inc are 1 for byte accesses and 4 for word accesses.

3.5.2 SYSTEM.VAL

VAL is a type-transfer / typecast mechanism. It should be used with extreme care as it
effectively bypasses any type-safety checks except to ensure that the sizes of each type are
the same. It allows the value of x (which can be of any type) to be interpreted as if it were
declared as type typeName. No value conversion takes place.

PROCEDURE VAL*(typeName: <any type>; x: <any type>): typeName;

3.5.3 SYSTEM.NULL

NULL returns true if x is negative or positive INTEGER or REAL zero.

PROCEDURE NULL*(x: <numeric type>): BOOLEAN;

V8.0 Copyright © 2021 CFB Software 11 of 21
www.astrobe.com

3.6 Interrupt Handlers

An Oberon interrupt handler is a normal procedure which has an integer constant in square
brackets instead of a list of parameters. The constant can be a literal or named constant e.g.

 PROCEDURE TimerHandler[0];

or

 CONST
 IRQ = 0;

 PROCEDURE Timer1Handler[IRQ];

The value of the constant is currently unused. Its presence is required to enable the compiler
to distinguish interrupt handler procedures from normal parameterless procedures.

Refer to the example module TestInt to see how an interrupt handler can be used.

V8.0 Copyright © 2021 CFB Software 12 of 21
www.astrobe.com

4 Restrictions

4.1 Constant declarations

REAL expressions are not allowed in CONST declarations.

4.2 Procedure Variables

It is an error if a procedure variable is assigned a procedure which is declared in a different
scope. However, the compiler does not report the error.

4.3 Anonymous Pointer Types

4.3.1 Extensions

Pointer types declared in an external module can only be extended in a client module if they
point to a named record.

e.g. the type Item declared as:

Item* = POINTER TO RECORD value: INTEGER END;

can be extended in a client module if the declaration is changed to the equivalent form:

Item* = POINTER TO ItemDesc;
ItemDesc* = RECORD value: INTEGER END;

4.3.2 Self References

Anonymous pointer types cannot directly reference themselves.

e.g. the type Item declared as:

Item = POINTER TO RECORD value: INTEGER; next: Item END;

should be changed to the equivalent form:

Item = POINTER TO ItemDesc;
ItemDesc = RECORD value: INTEGER; next: Item END;

4.4 Export

 String constants and anonymous variables cannot be exported.

 Pointer types can only be exported if the base type is also exported.

 Pointer variables can only be exported if the pointer type is also exported.

 Parameters of exported procedures must be of exported data types.

4.5 PACK(x, e)

Prerequisite: 1.0 <= x < 2.0

4.6 UNPK(x, e)

Prerequisite: x >= 0.0

V8.0 Copyright © 2021 CFB Software 13 of 21
www.astrobe.com

5 Implementation Size Limits

Items Maximum

Type extension levels 3

Parameters to a procedure 11

Minimum value of a CASE label 0

Maximum value of a CASE label 255

Number of labels in a CASE statement 256

Code size of a module 32000 bytes

Number of characters in a string
constant

256 (including the
terminating null)

V8.0 Copyright © 2021 CFB Software 14 of 21
www.astrobe.com

6 CASE Statements

6.1 Numeric CASE Statements

In the RISC5 Oberon compiler, the numeric CASE statement has been implemented in a way
that provides maximum speed and predictability of code-generation at the expense of
memory consumption.

For best results, restrict the use of numeric CASE statements to situations where:

 The case labels are naturally bytes, integers or characters

 The case labels are relatively contiguous

 There are a large number of cases (i.e. more than half-a-dozen)

 All cases have similar probabilities of occurrence

Otherwise consider using an IF-ELSIF...ELSIF-ELSE series of statements instead.

In some cases a hybrid combination of CASE and IF statements can result in a good
compromise between readability, efficiency and memory usage.

Consider the following example which could be used to map a set of strings to a
corresponding integer code:

 PROCEDURE FindKeyword*(id: ARRAY OF CHAR; VAR sym: INTEGER);
 BEGIN
 sym := ident;
 IF id = "ARRAY" THEN sym := array
 ELSIF id = "BEGIN" THEN sym := begin
 ELSIF id = "BY" THEN sym := by
 ELSIF id = "CASE" THEN sym := case
 ELSIF id = "CONST" THEN sym := const
 ELSIF id = "DIV" THEN sym := div
 ...
 ...

You can write this more efficiently with a hybrid combination of CASE and IF-THEN as
follows:

 PROCEDURE FindKeyword*(id: ARRAY OF CHAR; VAR sym: INTEGER);
 BEGIN
 sym := ident;
 CASE id[0] OF
 "A":
 IF id = "ARRAY" THEN sym := array
 END |
 "B":
 IF id = "BEGIN" THEN sym := begin
 ELSIF id = "BY" THEN sym := by
 END |
 "C":
 IF id = "CASE" THEN sym := case
 ELSIF id = "CONST" THEN sym := const
 END |
 "D":
 IF id = "DIV" THEN sym := div
 ELSIF id = "DO" THEN sym := do
 END |
 ...
 ...

V8.0 Copyright © 2021 CFB Software 15 of 21
www.astrobe.com

Timing tests using an example with ~30 cases, assuming each word occurs with the same
frequency, indicates that the CASE solution is 4 times faster than the IF-THEN ladder
solution. However, the CASE approach generates 5% more code.

If you do use the IF-THEN ladder you should check for matches that you expect to occur
most frequently in the first comparisons and those that you expect to occur least frequently
in the last comparisons for best efficiency.

6.2 Numeric CASE Error Reporting

The following CASE statement errors are trapped and reported:

 Duplicate CASE labels are reported as compile-time errors.

 A reference to a missing label results in a runtime error and program termination.

 The type of the selector must be BYTE, INTEGER or CHAR

 The type of each label must be type-compatible with the selector.

You should design your programs so that any conditions not satisfied by the CASE statement
are handled separately, as illustrated in the following example:

PROCEDURE ToUpperCase(VAR ch: CHAR);
BEGIN
 IF (ch >= "a") & (ch <= "z") THEN
 ch := CHR(ORD(ch) - ORD("a") + ORD("A"))
 END
END ToUpperCase;

PROCEDURE SoundexCode(ch: CHAR): INTEGER;
VAR
 value: INTEGER;
BEGIN
 ToUpperCase(ch);
 IF (ch < "A") OR (ch > "Z") THEN
 value := 0
 ELSE
 CASE ch OF
 "A", "E", "I", "O", "U", "H", "W", "Y":
 value := 0 |
 "B", "F", "P", "V":
 value := 1 |
 "C", "G", "J", "K", "Q", "S", "X", "Z":
 value := 2 |
 "D", "T":
 value := 3 |
 "L":
 value := 4 |
 "M", "N":
 value := 5 |
 "R":
 value := 6
 END
 END;
 RETURN value
END SoundexCode;

V8.0 Copyright © 2021 CFB Software 16 of 21
www.astrobe.com

6.3 Type Extension CASE Statements

Note that the syntax definition for the type test form of the CASE statement is:

CaseStatement = CASE qualident OF case {"|" case} END.
case = [qualident ":" StatementSequence]

This differs from the numeric form of the CASE statement:

CaseStatement = CASE expression OF case {"|" case} END.
case = [CaseLabelList ":" StatementSequence].
CaseLabelList = LabelRange {"," LabelRange}.
LabelRange = label [".." label].
label = integer | string | qualident.
WhileStatement = WHILE expression DO

and the IS form of type test:

expression = SimpleExpression [relation SimpleExpression].
relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.

both of which allow the type of an expression rather than a qualified identifier to be tested.
Consequently, valid examples of type tests, using the type definitions in ExtensionsCase
example supplied with Astrobe, are:

Shape: Shape;
shapes: ARRAY 4 OF Shape;

shape := shapes[1];
CASE shape OF
 Rectangle: shape.width := w;
 …
 …

IF shape[1] IS Rectangle THEN
 shape[1](Rectangle).width := w;

and an invalid example of a type test is:

CASE shape[1] OF
 Rectangle: shape[1].width := w;
 …
 …

V8.0 Copyright © 2021 CFB Software 17 of 21
www.astrobe.com

7 Programming Conventions and Guidelines
This chapter describes the programming guidelines and source code formatting conventions
which have been used in software developed using Astrobe.

Some programming guidelines are more important than others. In the first section, the more
important ones are described. The remaining sections contain more cosmetic rules which
describe the look-and-feel of Oberon programs published by CFB Software. If you like them,
feel free to use them for your programs as well. It may make your programs easier to
understand for someone who is used to the design, documentation, and coding patterns
used in applications developed using Astrobe.

7.1 Essentials

The most important programming conventions all centre around the aspect of evolvability. It
should be made as easy as possible to change existing programs in a reliable way, even if the
program has been written a long time ago or by someone else. Evolvability can often be
improved by increasing the locality of program pieces: if a piece of program may only have
an effect on a clearly locatable stretch of program text, it is easier to know where a program
modification may necessitate further changes. Basically, it's all a matter of keeping "ripple
effects" under control.

7.1.1 Precondition Checks

Preconditions are one of the most useful tools to detect unaccounted ripple effects.
Precondition checks allow to pinpoint semantic errors as early as possible, i.e. as closely to
their true source as possible. After larger design changes, properly used assertions can help
to dramatically reduce debugging time.

Whenever possible, use static means to express what you know about a program's design. In
particular, use the type and module systems of Oberon for this purpose; so the compiler can
help you to find inconsistencies, and thus can become an effective refactoring tool.

Precondition assertions should be used consistently. Don't allow client code to "enter" your

module if it doesn't fulfil the preconditions of your module's procedures. In this way, you

avoid propagation of foreign errors into your own code.

PROCEDURE Ten*(e: INTEGER): REAL;
BEGIN
 ASSERT((e >= 0) & (e <= 38), 21)
...

Assertion codes should be in the range 100 to 255 to avoid being confused with those used

in the Astrobe runtime system and libraries.

7.1.2 Global Variables

There should be as few global variables as possible. Global variables can be accessed from
many places in a program, at different times. This makes it difficult to keep track of all
possible interactions ("side effects") with such variables. This in turn increases the likelihood
of introducing errors when changing the use of them.

7.1.3 Function Procedures

Procedures which return a result should not modify global variables or VAR parameters as

V8.0 Copyright © 2021 CFB Software 18 of 21
www.astrobe.com

side effects. It is easier to deal with function procedures if they are true functions in the

mathematical sense, i.e., if they don't have side effects. Returning function results is ok.

Procedures should be kept as small as is practicable. It is preferable if the whole function is
visible on the screen without having to scroll.

7.2 Indentation

A new indentation level is realised by pressing the tab key. The number of spaces inserted
depends on the editor option Indent width.

A monotype font (e.g. Times New Roman, Consolas) should be used to assist consistent
indentation.

Do not use more than three levels of nesting (IF, WHILE etc.). Aim to limit the scope of each
block statement so that it is completely visible on one screen.

Combine nested IFs into single boolean expressions where appropriate:

IF (p # NIL) THEN
 IF (p.val # 0) THEN

should be written as:

IF (p # NIL) & (p.val # 0) THEN

Oberon uses short-circuit evaluation of such expressions, i.e. if the first expression is FALSE,
the second expression is not evaluated.

7.3 Semicolons

Semicolons are used to separate statements, not to terminate statements. This means that
there should be no superfluous semicolons.

Good

IF done THEN
 Print(result)
END

Bad

IF done THEN
 Print(result);
END

V8.0 Copyright © 2021 CFB Software 19 of 21
www.astrobe.com

7.4 Dereferencing

The optional dereferencing operator ^ should be left out wherever possible.

Good
h.next := p.prev.next

Bad
h^.next := p^.prev^.next

7.5 Letter case

In general, each identifier starts with a small letter, except:

 A module name always starts with a capital letter

 A type name always starts with a capital letter

 A procedure always starts with a capital letter, this is true for procedure constants,
types, variables, parameters, and record fields.

Good
null = 0X;
DrawDot = PROCEDURE (x, y: INTEGER);
PROCEDURE Proc (i, j: INTEGER; Draw: DrawDot);

Bad
NULL = 0X;
PROCEDURE isEmpty (q: Queue): BOOLEAN;
R = RECORD
 draw: DrawDot
END;

Don't capitalise identifiers with more than one character. They should be reserved for the
language. An exception is when you use peripheral register names in your programs that are
consistent with those used in the MCU manufacturers’ documentation e.g. MCU.PINSEL1

7.6 Names

 A proper procedure has a verb as name, e.g. DrawDot

 A function procedure has a noun or a predicate as name, e.g. Exponent(r), IsEmpty(q)

 Procedure names which start with the prefix Init are snappy, i.e., they have an effect
only when called for the first time. If called a second time, a snappy procedure either
does nothing, or it halts. In contrast, a procedure which sets some state and may be
called several times starts with the prefix Set.

 CamelCaps should be used to identify each word in an identifier, e.g. startAddress not
startaddress

 Names should not be unnecessarily long nor unnecessarily abbreviated, e.g. maxStep
not maximumForLoopStep, nextPage not nxtpg etc.

V8.0 Copyright © 2021 CFB Software 20 of 21
www.astrobe.com

7.7 White space

A single space should be inserted between lists of symbols, between actual parameters, and
between operators:

Good

VAR a, b, c: INTEGER;
DrawRect(l, t, r, b);
a := i * 8 + j - m[i, j];

Bad
VAR a,b,c: INTEGER;
DrawRect(l,t,r,b);
a:=b;
a := i*8 + j - m[i,j];

7.8 Alignment

 Opening and closing keywords are either aligned or on the same line

 IMPORT, CONST, TYPE, VAR, PROCEDURE sections are one level further indented than
the outer level.

 PROCEDURE X and END X are always aligned

 If the whole construct does not fit on one line, there is never a statement or a type
declaration after a keyword

 The contents of IF, WHILE, REPEAT, FOR, CASE constructs are one level further indented
if they do not fit on one line.

Good

IF expr THEN S0 ELSE S1 END;
REPEAT S0 UNTIL expr;
WHILE expr DO S0 END;

IF expr THEN
 S0
ELSE
 S1
END;

REPEAT
 S0
UNTIL expr;

i := 0; WHILE i # 15 DO DrawDot(a, i); INC(i) END;

TYPE Square = POINTER TO RECORD(Rectangle) END;

IMPORT Lists, Out,
 Reals, Main;

 VAR

 proc: Lists.Proc;

Bad
IF expr THEN S0
ELSE S1 END;

PROCEDURE P;
BEGIN ... END P;

BEGIN i := 0;
 j := a + 2;
 ...

REPEAT i := 0;
 j := a + 2;

V8.0 Copyright © 2021 CFB Software 21 of 21
www.astrobe.com

7.9 Boolean Expressions

Boolean expressions are often misused. Complex logical expressions can often be reduced to
a simpler form. Use truth tables to confirm that the simpler form is equivalent.

IF (~summary) OR (summary & ~printing)

can be simplified to:

IF ~(summary & printing)

Some transformations reveal that two booleans are essentially equivalent and one can be
removed altogether.

IF continue THEN finished := FALSE ELSE finished := TRUE END;

should just be:

finished := ~continue;

NOTE: DO NOT be tempted to make the same transformation to the statement:

IF continue THEN finished := FALSE END;

Finally,

IF continue = TRUE THEN

should just be:

IF continue THEN

7.10 Acknowledgements

The guidelines in this chapter have been adapted from the original BlackBox Component
Builder Programming Conventions with the kind permission of Oberon microsystems AG.
(www.oberon.ch)

http://www.oberon.ch/BlackBox.html

	1 Introduction
	2 Data Types
	2.1 BYTE
	2.2 CHAR
	2.3 INTEGER
	2.4 REAL
	2.5 SET

	3 Extensions
	3.1 Array of BYTE
	3.2 FOR loops
	3.3 Built-in Procedures
	3.3.1 BITS
	3.3.2 BFI
	3.3.3 BFX

	3.4 Leaf Procedures
	3.5 SYSTEM Procedures
	3.5.1 PUT and GET with auto-increment / decrement
	3.5.2 SYSTEM.VAL
	3.5.3 SYSTEM.NULL

	3.6 Interrupt Handlers

	4 Restrictions
	4.1 Constant declarations
	4.2 Procedure Variables
	4.3 Anonymous Pointer Types
	4.3.1 Extensions
	4.3.2 Self References

	4.4 Export
	4.5 PACK(x, e)
	4.6 UNPK(x, e)

	5 Implementation Size Limits
	6 CASE Statements
	6.1 Numeric CASE Statements
	6.2 Numeric CASE Error Reporting
	6.3 Type Extension CASE Statements

	7 Programming Conventions and Guidelines
	7.1 Essentials
	7.1.1 Precondition Checks
	7.1.2 Global Variables
	7.1.3 Function Procedures

	7.2 Indentation
	7.3 Semicolons
	7.4 Dereferencing
	7.5 Letter case
	7.6 Names
	7.7 White space
	7.8 Alignment
	7.9 Boolean Expressions
	7.10 Acknowledgements

