

© 1994-2007 Oberon microsystems, Inc.
Page 1/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Component Pascal Language Report

Authors: Oberon microsystems, Inc.
 March 2001, last update October 2006
Authors of Oberon-2 report: Hanspeter Mössenböck, Niklaus Wirth
 Institut für Computersysteme, ETH Zürich
 October 1993
Author of Oberon report: Niklaus Wirth
 Institut für Computersysteme, ETH Zürich
 1987

Copyright © 1994-2007 by Oberon microsystems, Inc., Switzerland.

All rights reserved. No part of this publication may be reproduced in any form or by any means,
without prior written permission by Oberon microsystems except for the free electronic distribution of
the unmodified document.

Oberon microsystems, Inc.
Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon is a trademark of Prof. Niklaus Wirth.
Component Pascal is a trademark of Oberon microsystems, Inc.
All other trademarks and registered trademarks belong to their respective owners.

© 1994-2007 Oberon microsystems, Inc.
Page 2/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

0. Contents

0. Contents..2
1. Introduction ...3
2. Syntax ...3
3. Vocabulary and Representation..3
4. Declarations and Scope Rules..5
5. Constant Declarations...6
6. Type Declarations ...6
6.1 Basic Types...7
6.2 Array Types...7
6.3 Record Types..8
6.4 Pointer Types ..9
6.5 Procedure Types...10
6.6 String Types ..10
7. Variable Declarations ..10
8. Expressions...11
8.1 Operands ..11
8.2 Operators ..12
9. Statements ..14
9.1 Assignments..15
9.2 Procedure Calls...15
9.3 Statement Sequences...16
9.4 If Statements ...16
9.5 Case Statements...16
9.6 While Statements ..17
9.7 Repeat Statements ...17
9.8 For Statements..17
9.9 Loop Statements ...18
9.10 Return and Exit Statements ..18
9.11 With Statements..18
10. Procedure Declarations...19
10.1 Formal Parameters ...20
10.2 Methods ..21
10.3 Predeclared Procedures ...23
10.4 Finalization ..24
11. Modules...25
Appendix A: Definition of Terms..27
Appendix B: Syntax of Component Pascal ...30
Appendix C: Domains of Basic Types...32
Appendix D: Mandatory Requirements for Environment...32

© 1994-2007 Oberon microsystems, Inc.
Page 3/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

1. Introduction

Component Pascal is Oberon microsystems' refinement of the Oberon-2 language. Oberon
microsystems thanks H. Mössenböck and N. Wirth for the friendly permission to use their Oberon-2
report as basis for this document.

Component Pascal is a general-purpose language in the tradition of Pascal, Modula-2, and Oberon.
Its most important features are block structure, modularity, separate compilation, static typing with
strong type checking (also across module boundaries), type extension with methods, dynamic loading
of modules, and garbage collection.
 Type extension makes Component Pascal an object-oriented language. An object is a variable of
an abstract data type consisting of private data (its state) and procedures that operate on this data.
Abstract data types are declared as extensible records. Component Pascal covers most terms of
object-oriented languages by the established vocabulary of imperative languages in order to minimize
the number of notions for similar concepts.
 Complete type safety and the requirement of a dynamic object model make Component Pascal a
component-oriented language.
 This report is not intended as a programmer's tutorial. It is intentionally kept concise. Its function is
to serve as a reference for programmers. What remains unsaid is mostly left so intentionally, either
because it can be derived from stated rules of the language, or because it would require to commit
the definition when a general commitment appears as unwise.
 Appendix A defines some terms that are used to express the type checking rules of Component
Pascal. Where they appear in the text, they are written in italics to indicate their special meaning (e.g.
the same type).
 It is recommended to minimize the use of procedure types and super calls, since they are
considered obsolete. They are retained for the time being, in order to simplify the use of existing
Oberon-2 code. Support for these features may be reduced in later product releases.

2. Syntax

An extended Backus-Naur formalism (EBNF) is used to describe the syntax of Component Pascal:
Alternatives are separated by |. Brackets [and] denote optionality of the enclosed expression, and
braces { and } denote its repetition (possibly 0 times). Ordinary parentheses (and) are used to group
symbols if necessary. Non-terminal symbols start with an upper-case letter (e.g., Statement).
Terminal symbols either start with a lower-case letter (e.g., ident), or are written all in upper-case
letters (e.g., BEGIN), or are denoted by strings (e.g., ":=").

3. Vocabulary and Representation

The representation of (terminal) symbols in terms of characters is defined using ISO 8859-1, i.e., the
Latin-1 extension of the ASCII character set. Unicode (16 bit) characters are allowed in string
constants only. Symbols are identifiers, numbers, strings, operators, and delimiters. The following
lexical rules must be observed: Blanks and line breaks must not occur within symbols (except in
comments, and blanks in strings). They are ignored unless they are essential to separate two
consecutive symbols. Capital and lower-case letters are considered as distinct.

© 1994-2007 Oberon microsystems, Inc.
Page 4/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

1. Identifiers are sequences of letters, digits, and underscores. The first character must not be a digit.

ident = (letter | "_") {letter | "_" | digit}.
letter = "A" .. "Z" | "a" .. "z" | "À".."Ö" | "Ø".."ö" | "ø".."ÿ".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Examples: x Scan Oberon2 GetSymbol firstLetter

2. Numbers are (unsigned) integer or real constants. The type of an integer constant is INTEGER if
the constant value belongs to INTEGER, or LONGINT otherwise (see 6.1). If the constant is specified
with the suffix 'H' or 'L', the representation is hexadecimal, otherwise the representation is decimal.
The suffix 'H' is used to specify 32-bit constants in the range -2147483648 .. 2147483647. At most 8
significant hex digits are allowed. The suffix 'L' is used to specify 64-bit constants.
 A real number always contains a decimal point. Optionally it may also contain a decimal scale
factor. The letter E means "times ten to the power of". A real number is always of type REAL.

number = integer | real.
integer = digit {digit} | digit {hexDigit} ("H" | "L").
real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = "E" ["+" | "-"] digit {digit}.
hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".

Examples:
1234567 INTEGER 1234567
0DH INTEGER 13
12.3 REAL 12.3
4.567E8 REAL 456700000
0FFFF0000H INTEGER -65536
0FFFF0000L LONGINT 4294901760

3. Character constants are denoted by the ordinal number of the character in hexadecimal notation
followed by the letter X.

character = digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in single (') or double (") quote marks. The opening
quote must be the same as the closing quote and must not occur within the string. The number of
characters in a string is called its length. A string of length 1 can be used wherever a character
constant is allowed and vice versa. Characters in string constants are allowed to be Unicode (16 bit)
characters.

string = ' " ' {char} ' " ' | " ' " {char} " ' ".

Examples: "Component Pascal" "Don't worry!" "x" “αβ“

5. Operators and delimiters are the special characters, character pairs, or reserved words listed
below. The reserved words consist exclusively of capital letters and cannot be used as identifiers.

 + := ABSTRACT EXTENSIBLE POINTER
 - ^ ARRAY FOR PROCEDURE

© 1994-2007 Oberon microsystems, Inc.
Page 5/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

 * = BEGIN IF RECORD
 / # BY IMPORT REPEAT
 ~ < CASE IN RETURN
 & > CLOSE IS THEN
 . <= CONST LIMITED TO
 , >= DIV LOOP TYPE
 ; .. DO MOD UNTIL
 | : ELSE MODULE VAR
 $ ELSIF NIL WHILE
 () EMPTY OF WITH
 [] END OR
 { } EXIT OUT

6. Comments may be inserted between any two symbols in a program. They are arbitrary character
sequences opened by the bracket (* and closed by *). Comments may be nested. They do not affect
the meaning of a program.

4. Declarations and Scope Rules

Every identifier occurring in a program must be introduced by a declaration, unless it is a predeclared
identifier. Declarations also specify certain permanent properties of an object, such as whether it is a
constant, a type, a variable, or a procedure. The identifier is then used to refer to the associated
object.
 The scope of an object x extends textually from the point of its declaration to the end of the
block (module, procedure, or record) to which the declaration belongs and hence to which the object
is local. It excludes the scopes of equally named objects which are declared in nested blocks. The
scope rules are:
1. No identifier may denote more than one object within a given scope (i.e., no identifier may be

declared twice in a block);
2. An object may only be referenced within its scope;
3. A declaration of a type T containing references to another type T1 may occur at a point where

T1 is still unknown. The declaration of T1 must follow in the same block to which T is local;
4. Identifiers denoting record fields (see 6.3) or methods (see 10.2) are valid in record designators

only.

An identifier declared in a module block may be followed by an export mark (" * " or " - ") in its
declaration to indicate that it is exported. An identifier x exported by a module M may be used in other
modules, if they import M (see Ch.11). The identifier is then denoted as M.x in these modules and is
called a qualified identifier. Variables and record fields marked with " - " in their declaration are read-
only (variables and fields) or implement-only (methods) in importing modules.

Qualident = [ident "."] ident.
IdentDef = ident [" * " | " - "].

The following identifiers are predeclared; their meaning is defined in the indicated sections:

 ABS (10.3) INTEGER (6.1)
 ANYPTR (6.1) FALSE (6.1)
 ANYREC (6.1) LEN (10.3)

© 1994-2007 Oberon microsystems, Inc.
Page 6/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

 ASH (10.3) LONG (10.3)
 ASSERT (10.3) LONGINT (6.1)
 BITS (10.3) MAX (10.3)
 BOOLEAN (6.1) MIN (10.3)
 BYTE (6.1) NEW (10.3)
 CAP (10.3) ODD (10.3)
 CHAR (6.1) ORD (10.3)
 CHR (10.3) REAL (6.1)
 DEC (10.3) SET (6.1)
 ENTIER (10.3) SHORT (10.3)
 EXCL (10.3) SHORTCHAR (6.1)
 HALT (10.3) SHORTINT (6.1)
 INC (10.3) SHORTREAL (6.1)
 INCL (10.3) SIZE (10.3)
 INF (6.1) TRUE (6.1)

5. Constant Declarations

A constant declaration associates an identifier with a constant value.

ConstantDeclaration = IdentDef "=" ConstExpression.
ConstExpression = Expression.

A constant expression is an expression that can be evaluated by a mere textual scan without actually
executing the program. Its operands are constants (Ch.8) or predeclared functions (Ch.10.3) that can
be evaluated at compile time. Examples of constant declarations are:

N = 100
limit = 2*N - 1
fullSet = {MIN(SET) .. MAX(SET)}

6. Type Declarations

A data type determines the set of values which variables of that type may assume, and the operators
that are applicable. A type declaration associates an identifier with a type. In the case of structured
types (arrays and records) it also defines the structure of variables of this type. A structured type
cannot contain itself.

TypeDeclaration = IdentDef "=" Type.
Type = Qualident | ArrayType | RecordType | PointerType | ProcedureType.

Examples:

Table = ARRAY N OF REAL
Tree = POINTER TO Node
Node = EXTENSIBLE RECORD
 key: INTEGER;
 left, right: Tree

© 1994-2007 Oberon microsystems, Inc.
Page 7/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

END
CenterTree = POINTER TO CenterNode
CenterNode = RECORD (Node)
 width: INTEGER;
 subnode: Tree
END
Object = POINTER TO ABSTRACT RECORD END;
Function = PROCEDURE (x: INTEGER): INTEGER

6.1 Basic Types

The basic types are denoted by predeclared identifiers. The associated operators are defined in 8.2
and the predeclared function procedures in 10.3. The values of the given basic types are the
following:

1. BOOLEAN the truth values TRUE and FALSE
2. SHORTCHAR the characters of the Latin-1 character set (0X .. 0FFX)
3. CHAR the characters of the Unicode character set (0X .. 0FFFFX)
4. BYTE the integers between MIN(BYTE) and MAX(BYTE)
5. SHORTINT the integers between MIN(SHORTINT) and MAX(SHORTINT)
6. INTEGER the integers between MIN(INTEGER) and MAX(INTEGER)
7. LONGINT the integers between MIN(LONGINT) and MAX(LONGINT)
8. SHORTREAL the real numbers between MIN(SHORTREAL) and MAX(SHORTREAL),

the value INF
9. REAL the real numbers between MIN(REAL) and MAX(REAL), the value INF
10. SET the sets of integers between 0 and MAX(SET)

Types 4 to 7 are integer types, types 8 and 9 are real types, and together they are called numeric
types. They form a hierarchy; the larger type includes (the values of) the smaller type:

 REAL >= SHORTREAL >= LONGINT >= INTEGER >= SHORTINT >= BYTE

Types 2 and 3 are character types with the type hierarchy:

 CHAR >= SHORTCHAR

6.2 Array Types

An array is a structure consisting of a number of elements which are all of the same type, called the
element type. The number of elements of an array is called its length. The elements of the array are
designated by indices, which are integers between 0 and the length minus 1.

ArrayType = ARRAY [Length {"," Length}] OF Type.
Length = ConstExpression.

A type of the form

 ARRAY L0, L1, ..., Ln OF T

© 1994-2007 Oberon microsystems, Inc.
Page 8/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

is understood as an abbreviation of

 ARRAY L0 OF
 ARRAY L1 OF
 ...
 ARRAY Ln OF T

Arrays declared without length are called open arrays. They are restricted to pointer base types (see
6.4), element types of open array types, and formal parameter types (see 10.1). Examples:

 ARRAY 10, N OF INTEGER
 ARRAY OF CHAR

6.3 Record Types

A record type is a structure consisting of a fixed number of elements, called fields, with possibly
different types. The record type declaration specifies the name and type of each field. The scope of
the field identifiers extends from the point of their declaration to the end of the record type, but they
are also visible within designators referring to elements of record variables (see 8.1). If a record type
is exported, field identifiers that are to be visible outside the declaring module must be marked. They
are called public fields; unmarked elements are called private fields.

RecordType = RecAttributes RECORD ["("BaseType")"] FieldList {";" FieldList} END.
RecAttributes = [ABSTRACT | EXTENSIBLE | LIMITED].
BaseType = Qualident.
FieldList = [IdentList ":" Type].
IdentList = IdentDef {"," IdentDef}.

The usage of a record type is restricted by the presence or absence of one of the following attributes:
ABSTRACT, EXTENSIBLE, and LIMITED.

A record type marked as ABSTRACT cannot be instantiated. No variables or fields of such a type can
ever exist. Abstract types are only used as base types for other record types (see below).
Variables of a LIMITED record type can only be allocated inside the module where the record type is
defined. The restriction applies to static allocation by a variable declaration (Ch. 7) as well as to
dynamic allocation by the standard procedure NEW (Ch. 10.3).

Record types marked as ABSTRACT or EXTENSIBLE are extensible, i.e., a record type can be
declared as an extension of such a record type. In the example

T0 = EXTENSIBLE RECORD x: INTEGER END
T1 = RECORD (T0) y: REAL END

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1 (see App. A). An extended type
T1 consists of the fields of its base type and of the fields which are declared in T1. All identifiers
declared in the extended record must be different from the identifiers declared in its base type
record(s). The base type of an abstract record must be abstract.

© 1994-2007 Oberon microsystems, Inc.
Page 9/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Alternatively, a pointer type can be specified as the base type. The record base type of the pointer is
used as the base type of the declared record in this case.
A record which is an extension of a hidden (i.e., non-exported) record type may not be exported.
Each record is implicitly an extension of the predeclared type ANYREC. ANYREC does not contain
any fields and can only be used in pointer and variable parameter declarations.

Summary of attributes:

attribute extension allocate
none no yes
EXTENSIBLE yes yes
ABSTRACT yes no
LIMITED in defining module only

Examples of record type declarations:

RECORD
 day, month, year: INTEGER
END

LIMITED RECORD
 name, firstname: ARRAY 32 OF CHAR;
 age: INTEGER;
 salary: REAL
END

6.4 Pointer Types

Variables of a pointer type P assume as values pointers to variables of some type T. T is called the
pointer base type of P and must be a record or array type. Pointer types adopt the extension relation
of their pointer base types: if a type T1 is an extension of T, and P1 is of type POINTER TO T1, then
P1 is also an extension of P.

 PointerType = POINTER TO Type.

If p is a variable of type P = POINTER TO T, a call of the predeclared procedure NEW(p) (see 10.3)
allocates a variable of type T in free storage. If T is a record type or an array type with fixed length,
the allocation has to be done with NEW(p); if T is an n-dimensional open array type the allocation has
to be done with NEW(p, e0, ..., en-1) where T is allocated with lengths given by the expressions e0, ...,
en-1. In either case a pointer to the allocated variable is assigned to p. p is of type P. The referenced
variable p^ (pronounced as p-referenced) is of type T. Any pointer variable may assume the value
NIL, which points to no variable at all.
All fields or elements of a newly allocated record or array are cleared, which implies that all
embedded pointers and procedure variables are initialized to NIL.
The predeclared type ANYPTR is defined as POINTER TO ANYREC. Any pointer to a record type is
therefore an extension of ANYPTR. The procedure NEW cannot be used for variables of type
ANYPTR.

© 1994-2007 Oberon microsystems, Inc.
Page 10/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

6.5 Procedure Types

Variables of a procedure type T have a procedure (or NIL) as value. If a procedure P is assigned to a
variable of type T, the formal parameter lists (see Ch. 10.1) of P and T must match (see App. A). P
must not be a predeclared procedure or a method nor may it be local to another procedure.

 ProcedureType = PROCEDURE [FormalParameters].

6.6 String Types

Values of a string type are sequences of characters terminated by a null character (0X). The length of
a string is the number of characters it contains excluding the null character.
Strings are either constants or stored in an array of character type. There are no predeclared
identifiers for string types because there is no need to use them in a declaration.
Constant strings which consist solely of characters in the range 0X..0FFX and strings stored in an
array of SHORTCHAR are of type Shortstring, all others are of type String.

7. Variable Declarations

Variable declarations introduce variables by defining an identifier and a data type for them.

 VariableDeclaration = IdentList ":" Type.

Record and pointer variables have both a static type (the type with which they are declared - simply
called their type) and a dynamic type (the type of their value at run-time). For pointers and variable
parameters of record type the dynamic type may be an extension of their static type. The static type
determines which fields of a record are accessible. The dynamic type is used to call methods (see
10.2).

Examples of variable declarations (refer to examples in Ch. 6):

i, j, k: INTEGER
x, y: REAL
p, q: BOOLEAN
s: SET
F: Function
a: ARRAY 100 OF REAL
w: ARRAY 16 OF
 RECORD
 name: ARRAY 32 OF CHAR;
 count: INTEGER
 END
t, c: Tree

© 1994-2007 Oberon microsystems, Inc.
Page 11/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

8. Expressions

Expressions are constructs denoting rules of computation whereby constants and current values of
variables are combined to compute other values by the application of operators and function
procedures. Expressions consist of operands and operators. Parentheses may be used to express
specific associations of operators and operands.

8.1 Operands

With the exception of set constructors and literal constants (numbers, character constants, or strings),
operands are denoted by designators. A designator consists of an identifier referring to a constant,
variable, or procedure. This identifier may possibly be qualified by a module identifier (see Ch. 4 and
11) and may be followed by selectors if the designated object is an element of a structure.

Designator = Qualident {"." ident | "[" ExpressionList "]" | "^" |
 "(" Qualident ")" | ActualParameters} ["$"].
ExpressionList = Expression {"," Expression}.
ActualParameters = "(" [ExpressionList] ")".

If a designates an array, then a[e] denotes that element of a whose index is the current value of the
expression e. The type of e must be an integer type. A designator of the form a[e0, e1, ..., en] stands
for a[e0][e1]...[en]. If r designates a record, then r.f denotes the field f of r or the method f of the
dynamic type of r (Ch. 10.2). If a or r are read-only, then also a[e] and r.f are read-only.
 If p designates a pointer, p^ denotes the variable which is referenced by p. The designators p^.f,
p^[e], and p^$ may be abbreviated as p.f, p[e], and p$, i.e., record, array, and string selectors imply
dereferencing. Dereferencing is also implied if a pointer is assigned to a variable of a record or array
type (Ch. 9.1), if a pointer is used as actual parameter for a formal parameter of a record or array type
(Ch. 10.1), or if a pointer is used as argument of the standard procedure LEN (Ch. 10.3).
 A type guard v(T) asserts that the dynamic type of v is T (or an extension of T), i.e., program
execution is aborted, if the dynamic type of v is not T (or an extension of T). Within the designator, v
is then regarded as having the static type T. The guard is applicable, if

 1. v is an IN or VAR parameter of record type or v is a pointer to a record type, and if
 2. T is an extension of the static type of v

If the designated object is a constant or a variable, then the designator refers to its current value. If it
is a procedure, the designator refers to that procedure unless it is followed by a (possibly empty)
parameter list in which case it implies an activation of that procedure and stands for the value
resulting from its execution. The actual parameters must correspond to the formal parameters as in
proper procedure calls (see 10.1).
 If a designates an array of character type, then a$ denotes the null terminated string contained in
a. It leads to a run-time error if a does not contain a 0X character. The $ selector is applied implicitly if
a is used as an operand of the concatenation operator (Ch. 8.2.4), a relational operator (Ch. 8.2.5), or
one of the predeclared procedures LONG and SHORT (Ch. 10.3).

Examples of designators (refer to examples in Ch.7):

i (INTEGER)
a[i] (REAL)

© 1994-2007 Oberon microsystems, Inc.
Page 12/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

w[3].name[i] (CHAR)
t.left.right (Tree)
t(CenterTree).subnode (Tree)
w[i].name$ (String)

8.2 Operators

Four classes of operators with different precedences (binding strengths) are syntactically
distinguished in expressions. The operator ~ has the highest precedence, followed by multiplication
operators, addition operators, and relations. Operators of the same precedence associate from left to
right. For example, x-y-z stands for (x-y)-z.

Expression = SimpleExpression [Relation SimpleExpression].
SimpleExpression = ["+" | "-"] Term {AddOperator Term}.
Term = Factor {MulOperator Factor}.
Factor = Designator | number | character | string | NIL | Set |
 "(" Expression ")" | "~" Factor.
Set = "{" [Element {"," Element}] "}".
Element = Expression [".." Expression].
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
AddOperator = "+" | "-" | OR.
MulOperator = "*" | "/" | DIV | MOD | "&".

The available operators are listed in the following tables. Some operators are applicable to operands
of various types, denoting different operations. In these cases, the actual operation is identified by the
type of the operands. The operands must be expression compatible with respect to the operator (see
App. A).

8.2.1 Logical operators

OR logical disjunction p OR q "if p then TRUE, else q"
& logical conjunction p & q "if p then q, else FALSE"
~ negation ~ p "not p"

These operators apply to BOOLEAN operands and yield a BOOLEAN result. The second operand of
a disjunction is only evaluated if the result of the first is FALSE. The second oprand of a conjunction
is only evaluated if the result of the first is TRUE.

8.2.2 Arithmetic operators

+ sum
- difference
* product
/ real quotient
DIV integer quotient
MOD modulus

The operators +, -, *, and / apply to operands of numeric types. The type of the result is REAL if the
operation is a division (/) or one of the operand types is a REAL. Otherwise the result type is

© 1994-2007 Oberon microsystems, Inc.
Page 13/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

SHORTREAL if one of the operand types is SHORTREAL, LONGINT if one of the operand types is
LONGINT, or INTEGER in any other case. If the result of a real operation is too large to be
represented as a real number, it is changed to the predeclared value INF with the same sign as the
original result. Note that this also applies to 1.0/0.0, but not to 0.0/0.0 which has no defined result at
all and leads to a run-time error. When used as monadic operators, - denotes sign inversion and +
denotes the identity operation. The operators DIV and MOD apply to integer operands only. They are
related by the following formulas:

x = (x DIV y) * y + (x MOD y)
0 <= (x MOD y) < y or 0 >= (x MOD y) > y

Note: x DIV y = ENTIER(x / y)

Examples:
 x y x DIV y x MOD y
 5 3 1 2
-5 3 -2 1
 5 -3 -2 -1
-5 -3 1 -2

Note:
(-5) DIV 3 = -2
but
-5 DIV 3 = -(5 DIV 3) = -1

8.2.3 Set operators

+ union
- difference (x - y = x * (-y))
* intersection
/ symmetric set difference (x / y = (x-y) + (y-x))

Set operators apply to operands of type SET and yield a result of type SET. The monadic minus sign
denotes the complement of x, i.e., -x denotes the set of integers between 0 and MAX(SET) which are
not elements of x. Set operators are not associative ((a+b)-c ≠ a+(b-c)).
A set constructor defines the value of a set by listing its elements between curly brackets. The
elements must be integers in the range 0..MAX(SET). A range a..b denotes all integers i with i >= a
and i <= b.

8.2.4 String operators

+ string concatenation

The concatenation operator applies to operands of string types. The resulting string consists of the
characters of the first operand followed by the characters of the second operand. If both operands are
of type Shortstring the result is of type Shortstring, otherwise the result is of type String.

8.2.5 Relations

= equal

© 1994-2007 Oberon microsystems, Inc.
Page 14/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

unequal
< less
<= less or equal
> greater
>= greater or equal
IN set membership
IS type test

Relations yield a BOOLEAN result. The relations =, #, <, <=, >, and >= apply to the numeric types,
character types, and string types. The relations = and # also apply to BOOLEAN and SET, as well as
to pointer and procedure types (including the value NIL). x IN s stands for "x is an element of s". x
must be an integer in the range 0..MAX(SET), and s of type SET. v IS T stands for "the dynamic type
of v is T (or an extension of T)" and is called a type test. It is applicable if

1. v is an IN or VAR parameter of record type or v is a pointer to a record type, and if
2. T is an extension of the static type of v

Examples of expressions (refer to examples in Ch.7):

1991 INTEGER
i DIV 3 INTEGER
~p OR q BOOLEAN
(i+j) * (i-j) INTEGER
s - {8, 9, 13} SET
i + x REAL
a[i+j] * a[i-j] REAL
(0<=i) & (i<100) BOOLEAN
t.key = 0 BOOLEAN
k IN {i..j-1} BOOLEAN
w[i].name$ <= "John" BOOLEAN
t IS CenterTree BOOLEAN

9. Statements

Statements denote actions. There are elementary and structured statements. Elementary statements
are not composed of any parts that are themselves statements. They are the assignment, the
procedure call, the return, and the exit statement. Structured statements are composed of parts that
are themselves statements. They are used to express sequencing and conditional, selective, and
repetitive execution. A statement may also be empty, in which case it denotes no action. The empty
statement is included in order to relax punctuation rules in statement sequences.

 Statement = [Assignment | ProcedureCall | IfStatement | CaseStatement |
 WhileStatement | RepeatStatement |
 ForStatement | LoopStatement | WithStatement |
 EXIT | RETURN [Expression]].

© 1994-2007 Oberon microsystems, Inc.
Page 15/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

9.1 Assignments

Assignments replace the current value of a variable by a new value specified by an expression. The
expression must be assignment compatible with the variable (see App. A). The assignment operator
is written as ":=" and pronounced as becomes.

 Assignment = Designator ":=" Expression.

If an expression e of type Te is assigned to a variable v of type Tv, the following happens:

 1. if Tv and Te are record types, all fields of that type are assigned.
 2. if Tv and Te are pointer types, the dynamic type of v becomes the dynamic type of e;
 3. if Tv is an array of character type and e is a string of length m < LEN(v), v[i] becomes ei for i =
0..m-1 and v[m] becomes 0X. It leads to a run-time error if m >= LEN(v).

Examples of assignments (refer to examples in Ch.7):

i := 0
p := i = j
x := i + 1
k := Log2(i+j)
F := Log2 (* see 10.1 *)
s := {2, 3, 5, 7, 11, 13}
a[i] := (x+y) * (x-y)
t.key := i
w[i+1].name := "John"
t := c

9.2 Procedure Calls

A procedure call activates a procedure. It may contain a list of actual parameters which replace the
corresponding formal parameters defined in the procedure declaration (see Ch. 10). The
correspondence is established by the positions of the parameters in the actual and formal parameter
lists. There are two kinds of parameters: variable and value parameters.
 If a formal parameter is a variable parameter, the corresponding actual parameter must be a
designator denoting a variable. If it denotes an element of a structured variable, the component
selectors are evaluated when the formal/actual parameter substitution takes place, i.e., before the
execution of the procedure. If a formal parameter is a value parameter, the corresponding actual
parameter must be an expression. This expression is evaluated before the procedure activation, and
the resulting value is assigned to the formal parameter (see also 10.1).

 ProcedureCall = Designator [ActualParameters].

Examples:

WriteInt(i*2+1) (* see 10.1 *)
INC(w[k].count)
t.Insert("John") (* see 11 *)

© 1994-2007 Oberon microsystems, Inc.
Page 16/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

9.3 Statement Sequences

Statement sequences denote the sequence of actions specified by the component statements which
are separated by semicolons.

 StatementSequence = Statement {";" Statement}.

9.4 If Statements

 IfStatement =
 IF Expression THEN StatementSequence
 {ELSIF Expression THEN StatementSequence}
 [ELSE StatementSequence]
 END.

If statements specify the conditional execution of guarded statement sequences. The Boolean
expression preceding a statement sequence is called its guard. The guards are evaluated in
sequence of occurrence, until one evaluates to TRUE, whereafter its associated statement sequence
is executed. If no guard is satisfied, the statement sequence following the symbol ELSE is executed,
if there is one.

Example:

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber
ELSIF (ch = "'") OR (ch = '"') THEN ReadString
ELSE SpecialCharacter
END

9.5 Case Statements

Case statements specify the selection and execution of a statement sequence according to the value
of an expression. First the case expression is evaluated, then that statement sequence is executed
whose case label list contains the obtained value. The case expression must be of an integer or
character type that includes the values of all case labels. Case labels are constants, and no value
must occur more than once. If the value of the expression does not occur as a label of any case, the
statement sequence following the symbol ELSE is selected, if there is one, otherwise the program is
aborted.

CaseStatement = CASE Expression OF Case {"|" Case}
 [ELSE StatementSequence] END.
Case = [CaseLabelList ":" StatementSequence].
CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression].

Example:

CASE ch OF
 "A" .. "Z": ReadIdentifier

© 1994-2007 Oberon microsystems, Inc.
Page 17/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

| "0" .. "9": ReadNumber
| "'", '"': ReadString
ELSE SpecialCharacter
END

9.6 While Statements

While statements specify the repeated execution of a statement sequence while the Boolean
expression (its guard) yields TRUE. The guard is checked before every execution of the statement
sequence.

 WhileStatement = WHILE Expression DO StatementSequence END.

Examples:
WHILE i > 0 DO i := i DIV 2; k := k + 1 END
WHILE (t # NIL) & (t.key # i) DO t := t.left END

9.7 Repeat Statements

A repeat statement specifies the repeated execution of a statement sequence until a condition
specified by a Boolean expression is satisfied. The statement sequence is executed at least once.

 RepeatStatement = REPEAT StatementSequence UNTIL Expression.

9.8 For Statements

A for statement specifies the repeated execution of a statement sequence while a progression of
values is assigned to an integer variable called the control variable of the for statement.

 ForStatement =
 FOR ident ":=" Expression TO Expression [BY ConstExpression]
 DO StatementSequence END.

The statement

 FOR v := beg TO end BY step DO statements END

is equivalent to

temp := end; v := beg;
IF step > 0 THEN
 WHILE v <= temp DO statements; INC(v, step) END
ELSE
 WHILE v >= temp DO statements; INC(v, step) END
END

temp has the same type as v. step must be a nonzero constant expression. If step is not specified, it
is assumed to be 1.

© 1994-2007 Oberon microsystems, Inc.
Page 18/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Examples:
FOR i := 0 TO 79 DO k := k + a[i] END
FOR i := 79 TO 1 BY -1 DO a[i] := a[i-1] END

9.9 Loop Statements

A loop statement specifies the repeated execution of a statement sequence. It is terminated upon
execution of an exit statement within that sequence (see 9.10).

 LoopStatement = LOOP StatementSequence END.

Example:
LOOP
 ReadInt(i);
 IF i < 0 THEN EXIT END;
 WriteInt(i)
END

Loop statements are useful to express repetitions with several exit points or cases where the exit
condition is in the middle of the repeated statement sequence.

9.10 Return and Exit Statements

A return statement indicates the termination of a procedure. It is denoted by the symbol RETURN,
followed by an expression if the procedure is a function procedure. The type of the expression must
be assignment compatible (see App. A) with the result type specified in the procedure heading (see
Ch.10).
 Function procedures require the presence of a return statement indicating the result value. In
proper procedures, a return statement is implied by the end of the procedure body. Any explicit return
statement therefore appears as an additional (probably exceptional) termination point.
 An exit statement is denoted by the symbol EXIT. It specifies termination of the enclosing loop
statement and continuation with the statement following that loop statement. Exit statements are
contextually, although not syntactically associated with the loop statement which contains them.

9.11 With Statements

With statements execute a statement sequence depending on the result of a type test and apply a
type guard to every occurrence of the tested variable within this statement sequence.

WithStatement = WITH [Guard DO StatementSequence]
 {"|" [Guard DO StatementSequence] }
 [ELSE StatementSequence] END.
Guard = Qualident ":" Qualident.

If v is a variable parameter of record type or a pointer variable, and if it is of a static type T0, the
statement

© 1994-2007 Oberon microsystems, Inc.
Page 19/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

 WITH v: T1 DO S1 | v: T2 DO S2 ELSE S3 END

has the following meaning: if the dynamic type of v is T1, then the statement sequence S1 is
executed where v is regarded as if it had the static type T1; else if the dynamic type of v is T2, then
S2 is executed where v is regarded as if it had the static type T2; else S3 is executed. T1 and T2
must be extensions of T0. If no type test is satisfied and if an else clause is missing the program is
aborted.

Example:
WITH t: CenterTree DO i := t.width; c := t.subnode END

10. Procedure Declarations

A procedure declaration consists of a procedure heading and a procedure body. The heading
specifies the procedure identifier and the formal parameters. For methods it also specifies the
receiver parameter and the attributes (see 10.2). The body contains declarations and statements. The
procedure identifier is repeated at the end of the procedure declaration.
 There are two kinds of procedures: proper procedures and function procedures. The latter are
activated by a function designator as a constituent of an expression and yield a result that is an
operand of the expression. Proper procedures are activated by a procedure call. A procedure is a
function procedure if its formal parameters specify a result type. The body of a function procedure
must contain a return statement which defines its result.
 All constants, variables, types, and procedures declared within a procedure body are local to the
procedure. Since procedures may be declared as local objects too, procedure declarations may be
nested. The call of a procedure within its declaration implies recursive activation.
 Local variables whose types are pointer types or procedure types are initialized to NIL before the
body of the procedure is executed.
 Objects declared in the environment of the procedure are also visible in those parts of the
procedure in which they are not concealed by a locally declared object with the same name.

ProcedureDeclaration = ProcedureHeading [";" ProcedureBody ident].
ProcedureHeading = PROCEDURE [Receiver] IdentDef
 [FormalParameters] MethAttributes.
ProcedureBody = DeclarationSequence
 [BEGIN StatementSequence] END.
DeclarationSequence = {CONST {ConstantDeclaration ";"} |
 TYPE {TypeDeclaration ";"} |
 VAR {VariableDeclaration ";"} }
 {ProcedureDeclaration ";" | ForwardDeclaration ";"}.
ForwardDeclaration = PROCEDURE " ^ " [Receiver] IdentDef
 [FormalParameters] MethAttributes.

If a procedure declaration specifies a receiver parameter, the procedure is considered to be a method
of the type of the receiver (see 10.2). A forward declaration serves to allow forward references to a
procedure whose actual declaration appears later in the text. The formal parameter lists of the
forward declaration and the actual declaration must match (see App. A) and the names of
corresponding parameters must be equal.

© 1994-2007 Oberon microsystems, Inc.
Page 20/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

10.1 Formal Parameters

Formal parameters are identifiers declared in the formal parameter list of a procedure. They
correspond to actual parameters specified in the procedure call. The correspondence between formal
and actual parameters is established when the procedure is called. There are two kinds of
parameters, value and variable parameters, the latter indicated in the formal parameter list by the
presence of one of the keywords VAR, IN, or OUT. Value parameters are local variables to which the
value of the corresponding actual parameter is assigned as an initial value. Variable parameters
correspond to actual parameters that are variables, and they stand for these variables. Variable
parameters can be used for input only (keyword IN), output only (keyword OUT), or input and output
(keyword VAR). IN can only be used for array and record parameters. Inside the procedure, input
parameters are read-only. Like local variables, output parameters of pointer types and procedure
types are initialized to NIL. Other output parameters must be considered as undefined prior to the first
assignment in the procedure. The scope of a formal parameter extends from its declaration to the end
of the procedure block in which it is declared. A function procedure without parameters must have an
empty parameter list. It must be called by a function designator whose actual parameter list is empty
too. The result type of a procedure can be neither a record nor an array.

FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" Type].
FPSection = [VAR | IN | OUT] ident {"," ident} ":" Type.

Let f be the formal parameter and a the corresponding actual parameter. If f is an open array, then a
must be array compatible to f and the lengths of f are taken from a. Otherwise a must be parameter
compatible to f (see App. A)

Examples of procedure declarations:

PROCEDURE ReadInt (OUT x: INTEGER);
 VAR i: INTEGER; ch: CHAR;
BEGIN
 i := 0; Read(ch);
 WHILE ("0" <= ch) & (ch <= "9") DO
 i := 10 * i + (ORD(ch) - ORD("0")); Read(ch)
 END;
 x := i
END ReadInt

PROCEDURE WriteInt (x: INTEGER); (* 0 <= x < 100000 *)
 VAR i: INTEGER; buf: ARRAY 5 OF INTEGER;
BEGIN
 i := 0;
 REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = 0;
 REPEAT DEC(i); Write(CHR(buf[i] + ORD("0"))) UNTIL i = 0
END WriteInt

PROCEDURE WriteString (IN s: ARRAY OF CHAR);
 VAR i: INTEGER;
BEGIN
 i := 0; WHILE (i < LEN(s)) & (s[i] # 0X) DO Write(s[i]); INC(i) END
END WriteString

© 1994-2007 Oberon microsystems, Inc.
Page 21/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

PROCEDURE Log2 (x: INTEGER): INTEGER;
 VAR y: INTEGER; (* assume x > 0 *)
BEGIN
 y := 0; WHILE x > 1 DO x := x DIV 2; INC(y) END;
 RETURN y
END Log2

PROCEDURE Modify (VAR n: Node);
BEGIN
 INC(n.key)
END Modify

10.2 Methods

Globally declared procedures may be associated with a record type declared in the same module.
The procedures are said to be methods bound to the record type. The binding is expressed by the
type of the receiver in the heading of a procedure declaration. The receiver may be either a VAR or
IN parameter of record type T or a value parameter of type POINTER TO T (where T is a record
type). The method is bound to the type T and is considered local to it.

ProcedureHeading = PROCEDURE [Receiver] IdentDef
 [FormalParameters] MethAttributes.
Receiver = "(" [VAR | IN] ident ":" ident ")".
MethAttributes = ["," NEW] ["," (ABSTRACT | EMPTY | EXTENSIBLE)].

If a method M is bound to a type T0, it is implicitly also bound to any type T1 which is an extension of
T0. However, if a method M' (with the same name as M) is declared to be bound to T1, this overrides
the binding of M to T1. M' is considered a redefinition of M for T1. The formal parameters of M and M'
must match, except if M is a function returning a pointer type. In the latter case, the function result
type of M' must be an extension of the function result type of M (covariance) (see App. A). If M and T1
are exported (see Chapter 4) M' must be exported too.
If M is not exported, M' must not be exported either. If M and M' are exported, they must use the
same export marks.

The following attributes are used to restrict and document the desired usage of a method:
NEW, ABSTRACT, EMPTY, and EXTENSIBLE.

NEW must be used on all newly introduced methods and must not be used on redefining methods.
The attribute helps to detect inconsistencies between a record and its extension when one of the two
is changed without updating the other.
 Abstract and empty method declarations consist of a procedure header only. Abstract methods are
never called. A record containing abstract methods must be abstract. A method redefined by an
abstract method must be abstract. An abstract method of an exported record must be exported.
Calling an empty method has no effect. Empty methods may not return function results and may not
have OUT parameters. A record containing new empty methods must be extensible or abstract. A
method redefined by an empty method must be empty or abstract. Abstract or empty methods are
usually redefined (implemented) in a record extension. They may not be called via super calls. A

© 1994-2007 Oberon microsystems, Inc.
Page 22/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

concrete (nonabstract) record extending an abstract record must implement all abstract methods
bound to the base record.
 Concrete methods (which contain a procedure body) are either extensible or final (no attribute). A
final method cannot be redefined in a record extension. A record containing extensible methods must
be extensible or abstract.

If v is a designator and M is a method, then v.M denotes that method M which is bound to the
dynamic type of v. Note, that this may be a different method than the one bound to the static type of
v. v is passed to M's receiver according to the parameter passing rules specified in Chapter 10.1.
 If r is a receiver parameter declared with type T, r.M^ denotes the method M bound to the base
type of T (super call). In a forward declaration of a method the receiver parameter must be of the
same type as in the actual method declaration. The formal parameter lists of both declarations must
match (App. A) and the names of corresponding parameters must be equal.
 Methods marked with " - " are "implement-only" exported. Such a method can be redefined in any
importing module but can only be called within the module containing the method declaration.
(Currently, the compiler also allows super calls to implement-only methods outside of their defining
module. This is a temporary feature to make migration easier.)

Examples:

PROCEDURE (t: Tree) Insert (node: Tree), NEW, EXTENSIBLE;
 VAR p, father: Tree;
BEGIN p := t;
 REPEAT father := p;
 IF node.key = p.key THEN RETURN END;
 IF node.key < p.key THEN p := p.left ELSE p := p.right END
 UNTIL p = NIL;
 IF node.key < father.key THEN
 father.left := node
 ELSE
 father.right := node
 END;
 node.left := NIL; node.right := NIL
END Insert

PROCEDURE (t: CenterTree) Insert (node: Tree); (* redefinition *)
BEGIN
 WriteInt(node(CenterTree).width);
 t.Insert^ (node) (* calls the Insert method of Tree *)
END Insert

PROCEDURE (obj: Object) Draw (w: Window), NEW, ABSTRACT

PROCEDURE (obj: Object) Notify (e: Event), NEW, EMPTY

© 1994-2007 Oberon microsystems, Inc.
Page 23/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

10.3 Predeclared Procedures

The following table lists the predeclared procedures. Some are generic procedures, i.e., they apply to
several types of operands. v stands for a variable, x and y for expressions, and T for a type. The first
matching line gives the correct result type.

Function procedures

Name Argument type Result type Function

ABS(x) <= INTEGER INTEGER absolute value
 real type, LONGINT type of x
ASH(x, y) x: <= INTEGER INTEGER arithmetic shift (x * 2^y)
 x: LONGINT LONGINT
 y: integer type
BITS(x) INTEGER SET {i | ODD(x DIV 2^i)}
CAP(x) character type type of x x is a Latin-1 letter:
 corresponding capital letter
CHR(x) integer type CHAR character with ordinal number
 x
ENTIER(x) real type LONGINT largest integer not greater
 than x
LEN(v, x) v: array; x: integer INTEGER length of v in dimension x
 constant (first dimension = 0)
LEN(v) array type INTEGER equivalent to LEN(v, 0)
 String INTEGER length of string
 (not counting 0X)
LONG(x) BYTE SHORTINT identity
 SHORTINT INTEGER
 INTEGER LONGINT
 SHORTREAL REAL
 SHORTCHAR CHAR
 Shortstring String
MAX(T) T = basic type T maximum value of type T
 T = SET INTEGER maximum element of a set
MAX(x, y) <= INTEGER INTEGER the larger value of x and y
 integer type LONGINT
 <= SHORTREAL SHORTREAL
 numeric type REAL
 SHORTCHAR SHORTCHAR
 character type CHAR
MIN(T) T = basic type T minimum value of type T
 T = SET INTEGER 0
MIN(x, y) <= INTEGER INTEGER the smaller of x and y
 integer type LONGINT
 <= SHORTREAL SHORTREAL
 numeric type REAL
 SHORTCHAR SHORTCHAR
 character type CHAR
ODD(x) integer type BOOLEAN x MOD 2 = 1

© 1994-2007 Oberon microsystems, Inc.
Page 24/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

ORD(x) CHAR INTEGER ordinal number of x
 SHORTCHAR SHORTINT ordinal number of x
 SET INTEGER (SUM i: i IN x: 2^i)
SHORT(x) LONGINT INTEGER identity
 INTEGER SHORTINT identity
 SHORTINT BYTE identity
 REAL SHORTREAL identity (truncation possible)
 CHAR SHORTCHAR projection
 String Shortstring projection
SIZE(T) any type INTEGER number of bytes required by T

SIZE cannot be used in constant expressions because its value depends on the actual compiler
implementation.

Proper procedures

Name Argument types Function

ASSERT(x) x: Boolean expression terminate program execution if not x
ASSERT(x, n) x: Boolean expression; terminate program execution
 n: integer constant if not x
DEC(v) integer type v := v - 1
DEC(v, n) v, n: integer type v := v - n
EXCL(v, x) v: SET; x: integer type, v := v - {x}
 0 <= x <= MAX(SET)
HALT(n) integer constant terminate program execution
INC(v) integer type v := v + 1
INC(v, n) v, n: integer type v := v + n
INCL(v, x) v: SET; x: integer type, v := v + {x}
 0 <= x <= MAX(SET)
NEW(v) pointer to record or allocate v ^
 fixed array
NEW(v, x0, ..., xn) v: pointer to open array; allocate v ^ with
 xi: integer type lengths x0.. xn

In ASSERT(x, n) and HALT(n), the interpretation of n is left to the underlying system implementation.

10.4 Finalization

A predeclared method named FINALIZE is associated with each record type as if it were declared to
be bound to the type ANYREC:

 PROCEDURE (a: ANYPTR) FINALIZE-, NEW, EMPTY;

The FINALIZE procedure can be implemented for any pointer type. The method is called at some
unspecified time after an object of that type (or a base type of it) has become unreachable via other
pointers (not globally anchored anymore) and before the object is deallocated.

© 1994-2007 Oberon microsystems, Inc.
Page 25/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

It is not recommended to re-anchor an object in its finalizer and the finalizer is not called again when
the object repeatedly becomes unreachable. Multiple unreachable objects are finalized in an
unspecified order.

11. Modules

A module is a collection of declarations of constants, types, variables, and procedures, together with
a sequence of statements for the purpose of assigning initial values to the variables. A module
constitutes a text that is compilable as a unit.

Module = MODULE ident ";" [ImportList] DeclarationSequence
 [BEGIN StatementSequence]
 [CLOSE StatementSequence] END ident ".".
ImportList = IMPORT Import {"," Import} ";".
Import = [ident ":="] ident.

The import list specifies the names of the imported modules. If a module A is imported by a module M
and A exports an identifier x, then x is referred to as A.x within M. If A is imported as B := A, the
object x must be referenced as B.x. This allows short alias names in qualified identifiers. A module
must not import itself. Identifiers that are to be exported (i.e., that are to be visible in client modules)
must be marked by an export mark in their declaration (see Chapter 4).
 The statement sequence following the symbol BEGIN is executed when the module is added to a
system (loaded), which is done after the imported modules have been loaded. It follows that cyclic
import of modules is illegal. Individual exported procedures can be activated from the system, and
these procedures serve as commands.
 Variables declared in a module are cleared prior to the execution of the module body. This implies
that all pointer or procedure typed variables are initialized to NIL.
 The statement sequence following the symbol CLOSE is executed when the module is removed
from the system.

Example:

MODULE Trees; (* exports: Tree, Node, Insert, Search, Write, Init *)

 IMPORT StdLog;

 TYPE
 Tree* = POINTER TO Node;
 Node* = RECORD (* exports read-only: Node.name *)
 name-: POINTER TO ARRAY OF CHAR;
 left, right: Tree
 END;

 PROCEDURE (t: Tree) Insert* (name: ARRAY OF CHAR), NEW;
 VAR p, father: Tree;
 BEGIN
 p := t;
 REPEAT father := p;
 IF name = p.name^ THEN RETURN END;

© 1994-2007 Oberon microsystems, Inc.
Page 26/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

 IF name < p.name^ THEN p := p.left ELSE p := p.right END
 UNTIL p = NIL;
 NEW(p); p.left := NIL; p.right := NIL;
 NEW(p.name, LEN(name$) + 1); p.name^ := name$;
 IF name < father.name^ THEN father.left := p ELSE father.right := p END
 END Insert;

 PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree, NEW;
 VAR p: Tree;
 BEGIN
 p := t;
 WHILE (p # NIL) & (name # p.name^) DO
 IF name < p.name^ THEN p := p.left ELSE p := p.right END
 END;
 RETURN p
 END Search;

 PROCEDURE (t: Tree) Write*, NEW;
 BEGIN
 IF t.left # NIL THEN t.left.Write END;
 StdLog.String(t.name); StdLog.Ln;
 IF t.right # NIL THEN t.right.Write END
 END Write;

 PROCEDURE Init* (t: Tree);
 BEGIN
 NEW(t.name, 1); t.name[0] := 0X; t.left := NIL; t.right := NIL
 END Init;

BEGIN
 StdLog.String("Trees loaded"); StdLog.Ln
CLOSE
 StdLog.String("Trees removed"); StdLog.Ln
END Trees.

© 1994-2007 Oberon microsystems, Inc.
Page 27/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Appendix A: Definition of Terms

Character types SHORTCHAR, CHAR
Integer types BYTE, SHORTINT, INTEGER, LONGINT
Real types SHORTREAL, REAL
Numeric types integer types, real types
String types Shortstring, String
Basic types BOOLEAN, SET, character types, numeric types

Same types
Two variables a and b with types Ta and Tb are of the same type if
1. Ta and Tb are both denoted by the same type identifier, or
2. Ta is declared in a type declaration of the form Ta = Tb, or
3. a and b appear in the same identifier list in a variable, record field,
 or formal parameter declaration.

Equal types
Two types Ta and Tb are equal if
1. Ta and Tb are the same type, or
2. Ta and Tb are open array types with equal element types, or
3. Ta and Tb are procedure types whose formal parameter lists match, or
4. Ta and Tb are pointer types with equal base types.

Matching formal parameter lists
Two formal parameter lists match if
1. they have the same number of parameters, and
2. they have either equal function result types or none, and
3. parameters at corresponding positions have equal types, and
4. parameters at corresponding positions are both either value, IN, OUT, or VAR parameters.

Type inclusion
Numeric and character types include (the values of) smaller types of the same class according to the
following hierarchies:
 REAL >= SHORTREAL >= LONGINT >= INTEGER >= SHORTINT >= BYTE
 CHAR >= SHORTCHAR

Type extension (base type)
Given a type declaration Tb = RECORD (Ta) ... END, Tb is a direct extension of Ta, and Ta is a direct
base type of Tb. A type Tb is an extension of a type Ta (Ta is a base type of Tb) if
1. Ta and Tb are the same types, or
2. Tb is a direct extension of an extension of Ta, or
3. Ta is of type ANYREC.
If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an extension of Pa (Pa is a base type of
Pb) if Tb is an extension of Ta.

Assignment compatible
An expression e of type Te is assignment compatible with a variable v of type Tv if one of the
following conditions hold:

© 1994-2007 Oberon microsystems, Inc.
Page 28/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

1. Te and Tv are equal and neither abstract, extensible, or limited record nor open array types;
2. Te and Tv are numeric or character types and Tv includes Te;
3. Te and Tv are pointer types and Te is an extension of Tv;
4. Tv is a pointer or a procedure type and e is NIL;
5. Tv is a numeric type and e is a constant expression whose value is contained in Tv;
6. Tv is an array of CHAR, Te is String or Shortstring, and LEN(e) < LEN(v);
7. Tv is an array of SHORTCHAR, Te is Shortstring, and LEN(e) < LEN(v);
8. Tv is a procedure type and e is the name of a procedure whose formal parameters match those of
Tv.

Array compatible
An actual parameter a of type Ta is array compatible with a formal parameter f of type Tf if
1. Tf and Ta are equal types, or
2. Tf is an open array, Ta is any array, and their element types are array compatible, or
3. Tf is an open array of CHAR and Ta is String, or
4. Tf is an open array of SHORTCHAR and Ta is Shortstring.

Parameter compatible
An actual parameter a of type Ta is parameter compatible with a formal parameter f of type Tf if
1. Tf and Ta are equal types, or
2. f is a value parameter and Ta is assignment compatible with Tf, or
3. f is an IN or VAR parameter and Tf and Ta are record types and Ta is an extension of Tf.

Expression compatible
For a given operator, the types of its operands are expression compatible if they conform to the
following table. The first matching line gives the correct result type. Type T1 must be an extension of
type T0:

operator first operand second operand result type
+ - * DIV MOD <= INTEGER <= INTEGER INTEGER
 integer type integer type LONGINT
/ integer type integer type REAL
+ - * / <= SHORTREAL <= SHORTREAL SHORTREAL
 numeric type numeric type REAL
 SET SET SET
+ Shortstring Shortstring Shortstring
 string type string type String
OR & ~ BOOLEAN BOOLEAN BOOLEAN
= # < <= > >= numeric type numeric type BOOLEAN
 character type character type BOOLEAN
 string type string type BOOLEAN
= # BOOLEAN BOOLEAN BOOLEAN
 SET SET BOOLEAN
 NIL, pointer type T0 or T1 NIL, pointer type T0 or T1 BOOLEAN
 procedure type T, NIL procedure type T, NIL BOOLEAN
IN integer type, 0..MAX(SET) SET BOOLEAN
IS T0 type T1 BOOLEAN

Constant expressions are calculated at compile time with maximum precision (LONGINT for integer
types, REAL for real types) and the result is handled like a numeric literal of the same value.

© 1994-2007 Oberon microsystems, Inc.
Page 29/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

If a real constant x with |x| <= MAX(SHORTREAL) or x = INF is combined with a nonconstant
operand of type SHORTREAL, the constant is considered a SHORTREAL and the result type is
SHORTREAL.

© 1994-2007 Oberon microsystems, Inc.
Page 30/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Appendix B: Syntax of Component Pascal

Module = MODULE ident ";" [ImportList] DeclSeq
 [BEGIN StatementSeq]
 [CLOSE StatementSeq] END ident ".".
ImportList = IMPORT [ident ":="] ident {"," [ident ":="] ident} ";".
DeclSeq = { CONST {ConstDecl ";" } | TYPE {TypeDecl ";"} |
 VAR {VarDecl ";"}} {ProcDecl ";" | ForwardDecl ";"}.
ConstDecl = IdentDef "=" ConstExpr.
TypeDecl = IdentDef "=" Type.
VarDecl = IdentList ":" Type.
ProcDecl = PROCEDURE [Receiver] IdentDef [FormalPars] MethAttributes
 [";" DeclSeq [BEGIN StatementSeq] END ident].
MethAttributes = ["," NEW] ["," (ABSTRACT | EMPTY | EXTENSIBLE)].
ForwardDecl = PROCEDURE " ^ " [Receiver] IdentDef [FormalPars] MethAttributes.
FormalPars = "(" [FPSection {";" FPSection}] ")" [":" Type].
FPSection = [VAR | IN | OUT] ident {"," ident} ":" Type.
Receiver = "(" [VAR | IN] ident ":" ident ")".
Type = Qualident
 | ARRAY [ConstExpr {"," ConstExpr}] OF Type
 | [ABSTRACT | EXTENSIBLE | LIMITED]
 RECORD ["("Qualident")"] FieldList {";" FieldList} END
 | POINTER TO Type
 | PROCEDURE [FormalPars].
FieldList = [IdentList ":" Type].
StatementSeq = Statement {";" Statement}.
Statement = [Designator ":=" Expr
 | Designator ["(" [ExprList] ")"]
 | IF Expr THEN StatementSeq
 {ELSIF Expr THEN StatementSeq}
 [ELSE StatementSeq] END
 | CASE Expr OF Case {"|" Case}
 [ELSE StatementSeq] END
 | WHILE Expr DO StatementSeq END
 | REPEAT StatementSeq UNTIL Expr
 | FOR ident ":=" Expr TO Expr [BY ConstExpr]
 DO StatementSeq END
 | LOOP StatementSeq END
 | WITH [Guard DO StatementSeq]
 {"|" [Guard DO StatementSeq] }
 [ELSE StatementSeq] END
 | EXIT
 | RETURN [Expr]
].
Case = [CaseLabels {"," CaseLabels} ":" StatementSeq].
CaseLabels = ConstExpr [".." ConstExpr].
Guard = Qualident ":" Qualident.
ConstExpr = Expr.

© 1994-2007 Oberon microsystems, Inc.
Page 31/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Expr = SimpleExpr [Relation SimpleExpr].
SimpleExpr = ["+" | "-"] Term {AddOp Term}.
Term = Factor {MulOp Factor}.
Factor = Designator | number | character | string | NIL | Set |
 "(" Expr ")" | " ~ " Factor.
Set = "{" [Element {"," Element}] "}".
Element = Expr [".." Expr].
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
AddOp = "+" | "-" | OR.
MulOp = " * " | "/" | DIV | MOD | "&".
Designator = Qualident {"." ident | "[" ExprList "]" | " ^ " | "(" Qualident ")"
 | "(" [ExprList] ")"} ["$"].
ExprList = Expr {"," Expr}.
IdentList = IdentDef {"," IdentDef}.
Qualident = [ident "."] ident.
IdentDef = ident [" * " | "-"].

© 1994-2007 Oberon microsystems, Inc.
Page 32/32

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Oberon microsystems Inc. Technoparkstrasse 1
CH-8005 Zürich
Switzerland

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Tel
Fax

info@oberon.ch
www.oberon.ch

+41 1 445 17 51
+41 1 445 17 52

Appendix C: Domains of Basic Types

Type Domain

BOOLEAN FALSE, TRUE
SHORTCHAR 0X .. 0FFX
CHAR 0X .. 0FFFFX
BYTE -128 .. 127
SHORTINT -32768 .. 32767
INTEGER -2147483648 .. 2147483647
LONGINT -9223372036854775808 .. 9223372036854775807
SHORTREAL -3.4E38 .. 3.4E38, INF (32-bit IEEE format)
REAL -1.8E308 .. 1.8E308, INF (64-bit IEEE format)
SET set of 0 .. 31

Appendix D: Mandatory Requirements for Environment

The Component Pascal definition implicitly relies on four fundamental assumptions.

1) There exists some run-time type information that allows to check the dynamic type of an object.
This is necessary to implement type tests and type guards.

2) There is no DISPOSE procedure. Memory cannot be deallocated manually, since this would
introduce the safety problem of memory leaks and of dangling pointers, i.e., premature deallocation.
Except for those embedded systems where no dynamic memory is used, or where it can be allocated
once and never needs to be released, an automatic garbage collector is required.

3) Modules and at least their exported procedures (commands) and exported types must be
retrievable dynamically. If necessary, this may cause modules to be loaded. The programming
interface used to load modules or to access the mentioned meta information is not defined by the
language, but the language compiler needs to preserve this information when generating code.
Except for fully linked applications where no modules will ever be added at run-time, a linking loader
for modules is required. Embedded systems are important examples of applications that can be fully
linked.

4) The environment must provide the ability to display Unicode characters, except for "headless"
embedded applications that need no display.

An implementation that doesn't fulfil these compiler and environment requirements is not compliant
with Component Pascal.

