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Preface 
In the fall of 1977, Prof. N. Wirth started the Lilith project, an integrated software and 
hardware effort with the main goal to develop a modern work-bench for the software 
engineer. The main components of the project have been the design and 
implementation of the programming language Modula·2 which Includes features for 
the programming of large software systems, the design and construction of the 
personal computer Lilith with modern devices (e.g. high-resolution screen, pointing 
device "mouse") and with an efficient architecture to support the needs of a 
high-level programming language, and the implementation of a comfortable 
programming environment (e.g. operating system, editor, compiler, debugger) which 
supports and facilitates program development. 

This thesis grew out of the authors participation In the Lilith project. It concentrates 
on the aspect of separate compilation which Is a very Important tool for the design 
and development of large software systems. Separate compilation has been 
successfully implemented and completely embedded into the Lilith computer 
system. This was enabled by a corresponding concept In Modula·2 and by the 
support of the operating system and the Lilith architecture. 

I am Indebted to Prof. N. Wirth for conceiving and coordinating the Lilith project, for" 
giving me the opportunity to participate in the design of Modula·2 and the 
development of a Modula-2 compiler, and for supervising this thesis. 

I would like to thank Prof. C. A. Zehnder lor his helpful advlces on this thesis. 

My thanks go to all my colleagues who participated In the Lilith project and 
contributed with their work to the success of the whole system. In particular, many 
thanks are due to A. Gorrengourt, Ch. Jacobi, and Sv.E. Knudsen for the valuable 
discussions and their participation in the development of the compiler. I am also 
grateful to F. Ostler for reading my thesis and improving my English. 

Above all, I am indebted to my wife Hanni for her encouragement and patience. 
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Abstract 
Separate compilation allows the separution of a program into smaller units which are 
compiled separately. For high-level programming languages it is mandatory that a 
compiler also provides full type- and parameter-checking on references among 
separate units. A possibility to implement these checks is that the complier saves 
interface descriptions of the complied units and uses them upon subsequent 
compilations. For a programmer It must be possible to specify the interface of a 
separate unit. For this purpose, a concept for separate compilation should be 
integrated in a programming language. 

The purpose of this thesis is to show how the programming language Modula-2 
provides a powerful concept for separate compilation which is the base for a simple, 
comfortable, and successful implementation. Units for separate compilation are 
modules; In order to provide a useful tool, the specification of the interface 
(definition module} is split from its actual implementation (implementation module}. 
This contributes to the stability of the interface, and this is very important when a 
program is developed by a group of programmers. 

The Modula-2 compiler which has been developed as a main component of the Lilith 
personal computer project generates a symbol fife upon compilation of a definition 
module. The symbol file contains a complete description of the definition module, 
and it is considered by the compiler to be the only and unique interface description 
during the compilation of neighbor modules. 

Apart from a good concept for separate compilation in a programming language, the 
convenience of an implementation of separate compilation mainly depends on the 
support provided by the operating system and the architecture of the target 
machine. The architecture of the personal computer With supports the separation 
of programs into separate modules. Code and global data of a separate module are 
loaded into so-called frames and addressed relatively within these frames. This 
allows the compiler to generate almost definitive code. 

This thesis further describes the structure of the implemented Modula-2 compiler 
and the functions of the various compiler parts. The compiler Is written in Modula-2 
itself and separate compilation was successfully used for structuring and 
development of the compiler. 
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Kurzfassung 
Separate Compilation erm(iglicht das Aufteilen eines Programms In kleinere 
Einheiten, die vom Compiler elnzeln iibersetzt werden. Fiir hohere 
Programmiersprachen 1st es dabel notwendig, dass der Compiler auch bel 
Referenzen zwischen separaten Elnheiten eine vollstii.ndige Typen- und 
Parameterpriifung durchfi.ihrt. Eine M(iglichkeit fUr die lmplementierung dleser 
Uberpriifungen ist, dass der Compiler Schnittstellenbeschreibungen der 
compllierten Einheiten aufbewahrt und diese bel nachfolgenden Compilationen 
verwimdet. Damit eln Programmlerer die Schnittstelle einer separaten Einheit 
eindeutig festlegen kann, muss die Programmlersprache eln Konzept fiir die 
separate Compilation enthalten. 

In dieser Dissertation wird gezeigt, wie in der Programmiersprache Modu/a-2 ein 
leistungsfiihiges Konzept fUr die separate Compilation definiert wurde, das die 
Grundlage fUr elne einfache, bequeme und erfolgreiche lmplementlerung 1st. 
Einheiten fiir die separate Compilation sind Module, wobei die Beschreibung der 
Schnlttstelle (Definitions·Modul) eines separaten Moduls von der eigentlichen 
Codierung {lmplementations·Modul) abgetrennt und fiir sich compiliert wird. Dies 
erhoht die Stabilitat der Schnittstelle, was sehr wichtig ist, wenn ein Programm von 
elner Gruppe von Programmierern gemeinsarn entwickelt wird. 

Der Modula·2·Compiler, der lm Rahmen des lilith·Arbeitsplatzrechner·Projekts 
entwlckelt wurde, erzeugt bel der Compilation elnes Definitlons·Moduls ein 
Symbol-File, das eine vollstii.ndige Beschreibung der lm Deflnilions·Modul 
definierten Obiekte enthii.lt. Das Symbol·file wird vom Compiler als einzige und 
eindeutige Beschrelbung der Schnlttstelle wii.hrend der Compilation angrenzender 
Module betrachtet. 

Neben einem guten Konzept fiir die separate Compilation in der 
Programmiersprache hii.ngt die Bequemlichkeit lhrer lmplementierung vor allem von 
der Unters!Utzung durch das Betriebssystem und von der Architektur des 
Zielrechners ab. Die Architektur des Arbeitsplatzrechners Ulith unterstUtzt die 
Aufteilung eines Programms in separate Module. Code und globale Daten eines 
separaten Moduls werden in sogenannte Frames geladen und innerhalb dieser 
Frames relativ adressiert. Dies erlaubt dem Compiler, beinahe definit iven Code zu 
erzeugen. 

Die Dissertation beschreibt im weitern die Struktur des implementlerten Modula·2· 
Compilers und die Aufgaben der verschiedenen Compilerteile. Der Compiler ist 
selbst in Modula·2 geschrieben, und die separate Compilation wurde erfolgreich fUr 
die Strukturierung und Entwicklung des Compilers angewendet. 
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1 Introduction 

1.1 Separate Compilation 

Compilation of a program Is considered by most programmers as a waste of time and 
they would prefer it to be an instant operation. Ills admitted that a compiler has to 
provide a great deal of support, to detect and report the programming errors, and to 
generate optimal code, but, nevertheless, all this should happen within no time. 
Compilation time, however, Increases with the length of a program and therefore it Is 
very inconvenient to compile large programs. It Is even worse to recompile a large 
program which has been modified at a few places only. 

The remedy appears to be separate compilation. The compiler allows a program to 
be split into smaller units which are compiled separately. After compilation of all 
separate units, the generated code parts are combined and the program is ready for 
execution. Separate compilation saves compilation time, if only a small unit, instead 
of the whole program, must be recompiled after a local modification. After 
combination with the new code part, the program is ready again for execution. The 
advantage of separate compilation becomes more obvious, if a large program is 
developed by a group of programmers. It allows each group member to develop his 
contribution more or less Independently of the rest of the group. 

Another positive aspect of separate compilation concerns library routines, e.g. 
mathematical functions or input·output routines. Instead of copying the source text 
of library routines into the program text, it makes more sensa to compile them 
separately and to combine their code with the other code of the program before Its 
execution. 

As soon as a program Is split into several separate units, the units will reference 
objects which are specified in other units. This means that there must be some 
information available about these objects, e.g. the name of a procedure and the 
types of its parameters. The Information about all objects of a separate unit which 
might be referenced from other units Is called the interface of the unit. For separate 
compilation it is important that the interface of a unit remains unchanged when the 
unit is modified and recompiled. In this case the other units are not affected. If, 
however, the interface of a unit Is changed, all units referring to It must be 
recompiled as well. 

We learn from this that behind an interface the programmer enjoys a great deal of 
freedom for the implementation of a separate unit, and that separate units become 
more independent of each other the smaller their interfaces are. The art of good 
software engineering is to design program structures such that the interfaces of 
separate units remain small and stable. 

Separate compilation is not a new invention. Nearly all assembly languages support 
it and also Fortran uses this principle. But according to the simplicity of these 
languages neither assembler programs nor the Fortran compilers check references 
to other units. They are assumed to be correct. An interface description only exists 
on a piece of paper or In the mind of the programmers, built Is not known to the 
translator. Full responsibility rests on the programmer who must be sure that the 
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interfaces are correctly used, and who also has to detect whether an Interface has 
been changed. 

With the next language generation, the Algol· and Pascal-like high-level 
programming languages, more security was Introduced in programming. This 
security is gained by a consistent type concept which requires that each variable 
must be declared to be of an explicit data type and that only values of this type may 
be assigned to a variable. Operands in expressions must be of compatible types, 
and in procedure calls the parameters must be substituted consistent with the type 
rules. All these conditions are tested by the compiler. It Is one of the advantages of 
high-level languages to give the programmer a certain amount of security In these 
important details and to allow him to concern himself more with the algorithm to be 
implemented. 

The improvement of security should not be abandoned, when a program is split Into 
separately compiled units. Full type and parameter checking should still be 
guaranteed by the compiler for references among separate units. To fulfill this 
demand, It Is necessary that the complier exactly knows the Interfaces of the 
separate units. A possibility to gain the needed Information could be that the 
compiler reads and processes for each compilation of a separate unit the source 
texts of the involved interfaces. For reasons of economy and also of security, 
however, it Is more appropriate that the compiler saves a symbolic interlace 
description after compilation of a separate unit. This description will be needed by 
the compiler when it compiles other units which refer to the corresponding separate 
unit. Saving a symbolic description also enables the compiler to easily detect 
whether an interface was changed and recompilation of other units is therefore 
necessary. 

Definitions 

For further use in this text, the term separate compilation Is reserved for 
implementations which provide full type and parameter checking across the 
boundaries of separate units at compilation time (see Figure 1.1 ). 

If the responsibility for the correct use of the interfaces is left to the programmer, or 
if references are checked upon combining the separate code parts, the term 
independent compilation will be used (see Figure 1.2). 

Assemblers and Fortran compilers therefore provide independent rather than 
separate compilation. 

A consistent type concept, as provided by Algol and Pascal, Is a necessary 
pre-condition for the implementation of separate compilation. But without additional 
language features, It is Impossible to provide a reliable and convenient 
Implementation. Separate compilation is not a feature which might be provided by a 
compiler only. It is rather necessary that separate compilation is Integrated as a 
concept into a programming language. It should be possible to explicitly specify 
separate units and especially their interfaces In terms of a programming language. 

What happens if such a concept Is missing in a programming language might, for 
example, be demonstrated with the programming language Pascal [Wir71). Pascal 
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programs were intended to be compiled as a whole, but compiler lmplementors soon 
detected that at least they should support access to library routines. The door was 
opened to a wide range of proposals and implementation efforts. Many different 
concepts were implemented, but in most cases it was independent compilation 
without explicit compiler tests. Pascal 6000 [Jen75], for example, allows the 
declaration of procedure headings to represent procedures which are externally 
encoded. No tests at all are provided to check the correctness of the interface. 
Other concepts are proposed in [Ce180] and [Eul82]. They allow the specification of 
further kinds of external objects. Their correctness is, however, checked after 
compilation upon combining the separate code parts. A concept which respects the 
block-structure of Pascal and provides separate compilation on all procedure levels 
is presented In [LeB79]. This Is done by dumping and restoring the whole 
environment (symbol table) of a separately compiled segment. A quite simple 
separate compilation concept has been Implemented in UCSD Pascal [Sof81). 
Programs may be subdivided into so-called units, and these may be compiled 
separately. Units are typically used to supply library routines to a program. 

A new generation of programming languages, which may be considered as 
successors of Pascal, Introduced the module concept as an additional too! for 
structured programming. The module concept both supports data abstraction and 
explicit visibility control and is therefore very useful for structuring large programs 
and, obviously, for separate compilation purposes. It allows a programmer to 
explicitly control the references which cross the boundaries of a module, and he may 
therefore reduce the visibility of objects and protect data and data structures from 
unauthorized access. This possibility to specify and control an interface is precisely 
what is needed for separate compilation. A module is an ideal program part to be 
compiled separately. It is therefore obvious that most programming languages 
which provide modules also include a concept for separate compilation. 

1.2 Modula-2 and its Implementation 

One of these new programming languages with a module and separate compilation 
concept is Modula-2 [Wir82] which has been designed and Implemented as 
successor of Pascal and Module [Wir77) at the lnstitut fiir lnformatik, ETH ZUrich. 
Modula-2 Is a modern programming tool for software engineers and supports both 
programming of systems and high-level applications. A philosophy for the language 
design was to include such concepts which are simple, but powerful and appropriate 
for a large number of applications. Overloading of the language by rarely used 
special concepts was Intentionally avoided. 

The separate compilation concept of Modula·2 has been designed according to this 
philosophy. It provides separate compilation of modules which are considered to be 
defined In a universal (global) environment. Local modules and procedures, 
however, are excluded from being complied separately. It seems not to be a severe 
restriction, because compiling in a universal environment is assumed to be 
appropriate for most applications. 

The purpose of this thesis is to show that Modula-2 provides a clear and powerful 
concept for separate compilation, and that this concept Is an excellent base for a 
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simple and comfortable Implementation. This work bases on the Implementation of 
Modula·2 on the personal computer Ulith (see section 1.3). Modula-2 is the sole 
programming language on this machine and the developed programming 
environment completely integrates separate compilation. 

The module construct, as provided by Modula-2, needs a slight improvement to 
become a powerful tool for separate compilation. II Is most Important that the 
interface of a separate module is not affected when a local change is performed. 
The best method to guarantee the stability of the Interface Is to split It completely 
from the actual implementation and to compile it separately. Modules and separate 
modules, as defined in Modula-2, are described in Chapter 2. In order to show that 
the chosen concept is a good compromise between simplicity and capacity, 
separate compilation concepts of other programming languages are described In 
Chapter 3 for comparison. 

The advantage of simple and clear language concepts Is that their Implementation In 
a compiler is easily and efficiently possible without causing unexpected overhead. A 
comfortable, successful, and efficlem Implementation of separate compilation has 
been realized on the personal computer Lilith. Important factors for a good 
implementation are, in addition to the language concept, the symbol file which 
contains the interface description of a separate module, the support given by the 
operating system, and also the architecture of the target machine. This Is described 
In Chapter 4. 

The further chapters of this text describe the organization, structure, and function of 
the Modula-2 multi-pass compiler which has been implemented on the personal 
computer Lilith. It is written In Modula-2 and the separate compilation facility is used 
for its internal structuring. Especially mentioned are the components of the complier 
which are important for the implementation of separate compilation. Chapter 5 
reports the history of the compiler development and describes the overall 
organization of the compiler. Chapter 6 describes the global complier data 
structures and the organization of the symbol table. Chapter 1 describes the scope 
handling structure which controls the visibility of the declared objects. Chapter 8 
describes the functions of the compiler parts and shows their decomposition Into 
separate modules. 

The conclusions which are given In Chapter 9 concern the use of Modula·2 and the 
separate compilation facility, separate modules, symbol files, and the Implemented 
Modula-2 compiler. Further, a possible Improvement of the module concept Is 
proposed. 

1.3 The Lilith Project 

The development of the programming language Modula·2 was embedded into a 
large proJect which was started at the lnstitut fUr lnforrnatik In 1977. The general aim 
of the whOle project was the design and the development of a personal work-station 
comput&r system for software engln&ers. This Includes a comfortable programming 
environment as well as an efficient computer whose architecture supports the needs 
of a high-level programming language. The final product of the co-ope.-aUve 
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software and hardware effort is the U/ith computer system [Wir81). 

The IT'aln components of the Lilith project 

Modula-2 

Design of the programming language Modula-2 and development of a multi-pass 
Modula-2 compiler for the personal computer Lilith. 

M-e ode 

Design of the M·code machine architecture which enables efficient code generation 
by a Modula-2 compiler, as well as efficient interpretation by a computer. 

Ulith 

Design and development of the Lilith hardware which efficiently executes the 
microcode in which theM-code interpreter is encoded. 

Medos-2 

Development of a single-user operating system which supports the linking, loading, 
and execution of programs, file access, and management of memory resources. 

Programs and Modules 

Development of a large set of programs and modules which utilize the capabilities of 
Lilith and provide a modern and efficient environment for the user of the machine 
(e.g. text editor, graphic editor, debugger, window handler, Input-output routines). 

15 

2 Separate Compilation Concept in Modula-2 

The programming language Modula-2 [Wir82) Is a modem programming tool for 
software engineers. It supports both systems programming and programming of 
high-level applications. The language has been designed In parallel with the 
development of the personal work-station computer Ulith [Wir81], and one of the 
main goals of the language design was to produce a tool powerful enough that ali 
software running on Lilith, including the operating system, can be written in 
Modula-2. 

Generally, Modula-2 may be considered as a successor of Pascal. It mainly differs 
from Pascal by the lack of files, which can be expressed in terms of more primitive 
features of the language, by an improved syntax, and by the new concepts of 
modules and separate compilation. In addition and mainly for systems 
programming, Modula-2 provides some low-level features and a simple coroutine 
concept. 

Because modules are Ideal units for the purposes of separate compilation, the first 
section describes the module concept. The second section gives a description of 
the concept for separate modules. 

2.1 The Module Concept 

The module concept extends the set of tools for structured programming. It Is 
necessary for the design and Implementation of large programs and enables the 
construction of modular components which combine program parts which logically 
belong together. 

The syntactic construction of modules Is quite similar to that of procedures. A 
module consists of a parameterless heading, the import and export specification, the 
declaration of local objects (constants, types, variables, procedures, and modules), 
and a statement part. Semantically, however, there are major differences. 

A first difference concerns the validity or visibility of objects. Each module and each 
procedure opens a validity range for obJects, a so-called scope. A general language 
rule requires that the names of all obJects visible In a scope must be unique. To 
support this some visibility rules are defined. 

Visibility rules for procedures: 

• Objects defined within a procedure are invisible outside. 

· Objects visible outside a procedure are also visible inside, unless an obJect with 
the same name is defined within the procedure. 

Example2.1 

VAR aa, bb, cc : CARDINAL; 
PROCEDURE pp; 

VAR bb, dd : REAL; 
( • bb, dd visible obJects declared Inside the procedure •) 
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( • aa, 
BEGIN 
END pp; 

cc, pp visible objects declared outside the procedure •) 

(• aa, bb, cc, pp visible objects declared outside the procedure •) 

The visibility rules for modules are both more restrictive and more general. With the 
exception of standard defined objects (e.g. CARDINAL), the visibility of objects 
across module boundaries is explicitly controlled by import and export 
specif ications. 

Visibility rules for modules: 

. An object visible outside a module is visible inside only if It Is imported. 

. An object defined within a module is visible outside only if it is exported. 

- Standard defined objects are implic itly visible inside a module. 

Example 2.2 

VAR aa, bb : CARDINAL; 
MODULE ITI!1 ; 

IMPORT bb; 
EXPORT pp; 
VAR cc : CARDINAL; 
PROCEDURE pp; 

VAR bb, dd : REAL; 
BEGIN 
END pp; 

(• cc, pp 
(• bb 

BEGIN 
END ITill; 

visible objects declared inside the module •) 
visible object declared outside the module •) 

( • pp visible object declared inside the module •) 
( • a a, bb, ITil1 visible objects declared outside the module •) 

Apart from their visibility, there is also a difference in the life-time of variables. 

Life-time rules: 

- The life-time of variables declared within a procedure is bound to the execution of 
the procedure. 

• The life-time of variables declared within a module is the same as that of variables 
declared outside. 

In the examples above the variables bb and dd of procedure pp are established when 
pp Is called and they disappear when the procedure terminates. The variable cc has 
the same life-time as the variable aa, even when it is declared local to module mm 
and invisible outside the module. 
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Another difference concerns the statement part. As the life-time of variables 
declared local to a module Is not bound to the execution of the module's statement 
part, this statement part Is reserved for special purposes. Modula-2 defines that It Is 
used for initialization. It cannot be called explicitly like a procedure; Instead H Is 
implicitly activated when the environment of the module is established, I.e. when the 
enclosing procedure is activated. In most cases the statement part has to Initialize 
the module's variables. 

Example 2.2 is derived from example 2.1 by inserting the scope of a module around 
procedure pp and variable cc. This reduces the visibility of cc to the new scope, 
whereas pp Is still visible in the same environment as It was before. Further, vartable 
a a is no longer visible in procedure pp . 

The idea behind the module concept is to combine objects which logically belong 
together (e.g. a procedure package) and to separate them from other obJects of the 
entire program. The explicit control of visibility reduces the number of visible 
objects, and it also allows to hide objects which should not be affected by other 
program parts. In particular, it is desirable to protect variables from unauthorized 
access. Hiding them is an effective way to achieve this goal. All this Is a contribution 
to the improvement of security In programming. 

Example2.3 

Handling of a queue is a typical example, where the use of a module structure is 
appropriate. The main Ingredients of a queue handler are procedures which allow to 
enter and to remove information. In a specific implementation these procedures 
operate on a circular buffer which represents the queue. The module allows to 
protect the buffer from direct access. For clients of the module, It Is only accessible 
via the procedures. 

MODULE Queue; 

EXPORT InfoEntry, Enter, Remove; 

CONST bu f fleng = 128; 

TYPE InfoEntry • RECORD (• some fields •) END; 
Bufferlndex • [0 . . buffleng- 1]; 

VAR buffer : ARRAY Buffer!ndex OF InfoEntry; 
enter, remove : Buffer!ndex; 

PROCEDURE Enter(info : InfoEntry; VAR o~ : BOOLEAN); 
BEGIN (• Enter •) 

o~ :• (enter + 1) MOD buffleng <> remove; 
IF o~ THEN 

buffer[enter] :• info; 
enter :• {enter + 1) MOO buffleng; 

END; 
END Enter; 



PROCEDURE Remove(VAR Info: InfoEntry; VAR OK: BOOLEAN ); 
BEGIN (• Remove •) 

oK :• enter <> remove; 
IF ok THEN 

Info := buffer[remove] ; 
remove := (remove + 1) MOO buffleng; 

END; 
END Remove; 

BEGIN (• Queue •) 
enter := 0; 
remove :• 0; 

END Queue; 

For large programs there still remains a visibility problem. A name conflict occurs, If 
several modules (possibly written by different programmers) export objects with the 
same name. To prevent ambiguities, qualified export may be specified In the export 
list. In this case the exported objects are only visible outside the module, If their 
name is preceded by the module's name, i.e. qualified access. Direct access to such 
objects is possible in other modules, if they are explicitly Imported (from import). 
Qualified access in olher modules is necessary in any case, if only the module name 

is Imported. 

Example2.4 

MODULE rrm; 
EXPORT QUALIFIED pp; 

END rrm; 
------- IMl . pp ------- qualified access 

MODULE nn; 
FROM mm INPORT pp; 

------- pp ---------- direct access 
END nn; 

MODULE oo; 
IMPORT rrm; 

------- rrm.pp ------- qualified access 
END oo; 

2.2 Separate Modules 

For separate compilation purposes, the module tums out to be an Ideal unit. 
Visibility rules for modules give the programmer an explicit control over the 
references across the module boundaries, and the export list Is well suited for the 
specification of the interface of a separate compilation unit. It was therefore obviOus 
to choose modules as separate compilation units In Modula·2 [Gei79, Wlr82). 
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Definitions 

A separate module is a unit which constitutes a separately compiled part of a 
program. In the further parts of this paper separate modules will simply be called 
modules. 

For modules nested within a separate module the tenn local module will be used. 

The partitioning of a program Into separate modules Is supported on the glObal level 
only. The environment of each separate module Is considered as the "universe" In 
which the separately compiled modules are embedded. Separate compilation of 
local modules and procedures is intentionally not provided. The chosen solution 
seems to be a good compromise which enables almost all possible applications, but 
reduces the complexity of the concept and allows a simple Implementation. 
Compilers have only to save the Interface description of a separate module, but not 
also a description of the module's environment. 

The Interface of a separate module may be considered as a contract of the module 
with Its Importers (clients). If the Interface Is changed, all Importers of the module 
must be recompiled. For achieving a great degree of Independence In the 
development of separate program parts, It Is Important that the Interface of a 
separate module remains stable (unchanged) upon Its recompilation. 

To guarantee the stability of an Interface upon recompllatiOn, a compiler could 
provide extensive tests which compare an already existing symbolic Interface 
description with the actual state of the Interface. This Is, however, not satisfactory at 
all, because an unintended change of an Interface could have far.reachlng 
consequences. Modula·2 Improves the security for the programmer by separating 
the Interface definition from the actual Implementation. It splits the description of a 
separate module which exports objects to other program parts into two 
complementary parts, a definition module and an Implementation module. 

The definition module contains all declarations which are needed for a complete 
specification of the interface. For procedures, only the heading with the procedure's 
name and parameter list are relevant for the Interface. Local declarations and the 
statement parts of the procedures must therefore not occur in the definition module. 
Considering that a definition module exports to an unknown environment, qualified 
export must be specified In definition modules. 

Example2.5 

If the module Queue of example 2.3 is compiled separately, the following definition 
module would be specified. 

DEFINITION MODULE Queue; 

EXPORT QUALIFIED InfoEntry, Enter, Remove; 

TYPE InroEntry • RECORD (• some fields •} END; 

PROCEDURE Enter(1nfo : InfoEntry; VAR ok: BOOLEAN}; 



) 
..:0 

PROCEDURE Remove(VAR info: InfoEntry; VAR ok: BOOLEAN}; 

END Queue. 

The implementation module is considered as the complement of the definition 
module. It is the actual encoding of the separate module. It contains local objects 
and statements which need not be known to the clients of the module. Generally, 
the objects declared in the definilion module are Implicitly defined within the 
implementation module. Only procedures must be declared agaln, this time as 
normal procedures with heading, local obJect declarations, and a statement part. It 
is obvious that their headings must be the same as the headings of the procedures in 
the definition module. 

Implementation modules do not have an export list, because exported objects of the 
separate module are declared in the definition module. But they have their own 
import list to import the needed external objects. This again contributes to the 
separation of the actual implementation from the interface. 

Example 2.6 

Implementation module of the separate module Queue. 

IMPLEMENTATION MODULE Queue; 

CONST buffleng = 128; 

TYPE Bufferlndex • (0 .. buffleng- 1); 

VAR buffer : ARRAY Bufferindex OF InfoEntry; 
enter, remove : Bufferindex; 

PROCEDURE Enter(1nfo : InfoEntry; VAR ok: BOOLEAN}; 
BEGIN (• Enter •} 

ok :• (enter + 1) MOD buffleng <> remove; 
IF ok THEN 

buffer(enter] :• 1nfo; 
enter ; e (enter + 1} MOD buffleng ; 

END; 
END Enter; 

PROCEDURE Remove(VAR 1nfo: InfoEntry; VAR ok: BOOLEAN}; 
BEGIN (• Remove •} 

ok :• enter <> remove; 
IF ok THEN 

1nfo :• buffer[remove); 
remove :• (remove + 1} MOD buffleng; 

END; 
END Remove; 

) 

BEGIN (• Queue • } 
enter :• 0; 
remove :• 0; 

END Queue. 
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The separation of the interface description from the actual implementation is highly 
advantageous. The complier can generate the symbolic description of the interface 
upon compilation of the definition module. This will be the valid reference for all 
Importing separate modules, and in particular for the compilation of the 
implementation module. It guarantees that changes of the implementation module 
do not affect the interface. It is even possible to write several implementation 
modules for the same Interface, which might be appropriate to different situations. 
The only condition which must be respected by the implementor is that the 
semantics of his implementation corresponds to that which Is intended. Although 
the separate compilation concept of Modula·2 supports full checking of types and 
parameters, it does not provide features to completely control the semantics of an 
Implementation. For example, it would be still possible to supply the interface 
defined In definition module Queue with an implementation module of inexpected 
behavior, I.e. a stack instead of an ordinary queue might be implemented. 

Example2.7 

A different implementation of the separate module Queue stores the Information In a 
linear list instead of In a circular buffer. The Intended semantics of queue handling 
are still observed. 

IMPLEMENTATION MODULE Queue; 

FROM Storage IMPORT ALLOCATE, DEALLOCATE; 

TYPE ElemPtr • POINTER TO Element; 
Element • RECORD 

1nfo 
11nk 

END; 

VAR enter : ElemPtr; 
remove : ElemPtr; 

InfoEntry; 
ElemPtr; 

PROCEDURE Enter(1nfo InfoEntry; VAR ok: BOOLEAN}; 
BEGIN (• Enter •} 

ok :• TRUE ; 
entert.1nfo :• info; 
NEW(entert.l1nk}; 
enter :• entert. 11nk; 

END Enter; 
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PROCEDURE Remove{VAR info: InfoEntry; VAR ok: BOOLEAN); 
VAR help : ElemPtr; 

BEGIN (• Remove •) 
ok := remove <> enter; 
IF ok THEN 

info := removet.info; 
help := remove; 
remove := helpt. link; 
DISPOSE(help); 

END; 
END Remove; 

BEGIN (• Queue •) 
NEW( enter); 
remove := enter; 

END Queue. 

A reason for splitting a separate module Into definition and Implementation modules 
is to separate the interface information, which must be available to the clients of the 
module, from implementation details, which usually are considered private to the 
module. This separation is simply achieved for procedures. For calling a procedure, 
a client only needs to know the procedure's name and parameter list. Therefore, 
local declarations and the statement part of an exported procedure are declared in 
the implementation module. 

More problems arise with type declarations. The declaration rules of Modula-2 
require that all types used in declarations must be declared as well. This implies 
that, apart from an exported type, a definition module possibly contains additional 
type declarations which are components of the exported type. For example, 
consider that a pointer type is exported by a definition module. In this case also the 
referenced type structure (e.g. a record type) must be specified in the definition 
module. This might be cumbersome for two reasons. First, the referenced type 
structure could be implementation-dependent and therefore it could be inconvenient 
to declare it already in the definition module. Second, it could be Important to 
protect objects of the referenced type from direct access and modification by 
clients. As in Modula-2 the structures of exported types are completely transparent 
outside the module, it is impossible to protect a referenced type structure. 

In order to improve this unpleasant situation, Modula-2 allows to specify types with 
opaque export. A type definition in a definition module may consist of a type 
Identifier only, i.e. without specification of a type structure. This means that outside 
the module only the type's name Is known but not Its properties. Client modules may 
declare objects of such types, but they are not allowed to directly operate on them. 
All possible operations on objects of types with opaque export must be provided by 
the exporting module, I.e. with a collection of procedures. In particular, a procedure 
must be provided which initializes the corresponding objects. 

According to exported procedures, types with opaque export must be completely 
declared in the corresponding Implementation module. In order to avoid complex 
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code generation, it was decided that opaque export of types is restricted to pointer 
and integer types. 

Example 2.8 

A typical example for the use of opaque type export is a simple file handling module 
which hides the actual representation of a file. File variables may be declared in a 
user program, but it Is required that only procedures of the file module operate on 
these variables. 

DEFINITION MODULE SimpleFiles; 

EXPORT QUALIFIED File, Open, Close, Read, .... 

TYPE File; (• type with opaque export •) 

PROCEDURE Open(VAR f: File); 
PROCEDURE Close(VAR f: File); 

PROCEDURE Read{VAR f: File; VAR ch: CHAR); 

END SimpleFiles. 

IMPLEMENTATION MODULE SimpleFiles; 

FROM Storage IMPORT ALLOCATE, DEALLOCATE; 

TYPE File = POINTER TO FileDesc; (• complete declaration •) 
FileDesc = RECORD (• some fields •) END; 

PROCEDURE Open(VAR f: File); 
BEGIN (• Open •) 

NEW{f); 
WITH ft DO (• initialize file •) END; 

END Open; 

PROCEDURE Close(VAR f: File); 
BEGIN (• Close •) 

WITH ft DO (• terminate file •) END; 
DISPOSE(f); 

END Close; 
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PROCEDURE Read(VAR f: File; VAR ch: CHAR); 
BEGIN (• Read •) 

WITH ft DO (• assign 'ch' a value from buffer •) END; 
END Read; 

END SimpleFiles. 
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3 Separate Compilation in Other Programming Languages 
This chapter gives a short overview of the separate compilation concepts that are 
provided by some other representants of the new programming language 
generation. As examples the languages UCSD Pascal (Sof81], Mesa [Mit79], and 
Ada [Ada80] are chosen. They all base on the type and block-structure concept of 
Pascal and include a module concept. UCSD Pascal is a slight extension of Pascal 
with a very simple separate compilation concept. Its main disadvantage is that the 
interface specification is coupled with the implementation part. This makes the use 
of separate compilation very inconvenient. Mesa and Ada provide more complex 
separate compilation concepts than Modula-2. In Mesa It is possible to have 
definition parts which are partially exported by several implementation parts, and 
Ada provides separate compilation of local modules and procedures. The 
disadvantage of these features, which are useful in some special applications, is that 
their implementation is expensive and that also the normal user pays for the 
complexity. 

For illustration, the queue handling module which has been used as example in the 
previous chapter will be encoded in all the discussed languages. 

The approximate date of development of the programming languages is listed in the 
following table: 

1970 
1972 
1974 Mesa 
1976 
1978 
1980 

3.1 UCSD Pascal 

Modula 
Modula·2 

Pascal 

UCSD Pascal 

Ada 

The lack of a separate compilation concept in the programming language Pascal 
[Wir71), as mentioned above, opened the door for a wide spectrum of language 
extensions for this purpose. Only a few of the proposed and Implemented 
extensions are genuine separate compilation facilities which check the correct use 
of the interfaces upon compilation. There are many concepts which defer the actual 
checking to linking time when the code parts are combined. 

UCSD Pascal [Sof81] is a variant of Pascal that has a quite simple separate 
compilation concept which is basically similar to that of Modula-2. UCSD Pascal is 
intended to be "one Pascal for all Microcomputers". It is the programming language 
of a programming system called UCSD p-SYSTEM. This system, developed at the 
University of California at San Diego and based on the Pascai-P compiler developed 
at ETH, provides the programmer with a machine independent programming 
environment which also facilitates portability. The UCSD p·SYSTEM is widespread 
in the world of microcomputers. The main differences between Pascal and UCSD 
Pascal concern string handling, file handling, concurrency, and separate 
compilation. 
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Separately compiled entities in UCSD Pascal are either normal programs or 
so-called units. A unit is a module-like construction which contains a group of 
routines and data structures. It consists of an interface part and an implementation 
part. The interface part contains all object declarations which are visible for client 
units and programs. The implementation part contains the actual implementations 
of the procedures and functions which are declared In the interface and possibly 
further declarations of local objects. The implementation part may further contain a 
statement part which is used for initialization and termination purposes. 

Example 3.1 

UNIT Queue; 

INTERFACE 

TYPE InfoEntry = RECORD (• some fields •) END; 

PROCEDURE Enterinfo(info InfoEntry; VAR ok: BOOLEAN); 

PROCEDURE Removeinfo(VAR info: InfoEntry; VAR ok: BOOLEAN); 

IMPLEMENTATION 

CONST buffleng = 128; 
buffmax = 127; (• buffleng - 1 •) 

TYPE Bufferindex • 0 .. buffmax; 

VAR buffer : ARRAY [ Bufferindex ] OF InfoEntry; 
enter, remove : Bufferindex; 

PROCEDURE Enterinfo; (• no parameter list in redeclaration •) 
BEGIN (• Enterinfo •) 

ok := (enter + 1) MOD buffleng <> remove; 
IF ok THEN 

BEGIN 
buffer[enter] := info; 
enter := (enter + 1) MOD buffleng; 

END; 
END; (• Enterinfo •) 

PROCEDURE Removeinfo; 
BEGIN (• Removeinfo •) 

ok := enter <> remove; 
IF ok THEN 

BEGIN 
info := buffer[remove]; 
remove := (remove + 1) MOD buffl eng; 

END; 
END: (• Removeinfo •) 

BEGIN (• Queue •) 
(• initialization code •) 
enter := 0; 
remove := 0; 

END. (• Queue •) 
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A program or unit may use another unit by listing Its name In the uses clause. In 
programs the uses clause Immediately follows the program heading, in units It may 
appear at the beginning of either the Interface or the Implementation part. If a unit 
name appears In the uses clause, all its objects declared In Its interface part are 
visible within the importing client. UCSD Pascal does not provide a feature to 
indicate whether or not an Imported object is directly accessible, nor is it possible to 
select individual entities while omitting others. This may be very inconvenient, 
because the user has to know all names defined in an imported interface. If more 
than one unit is Imported, it Is also necessary that the names of the objects provided 
by the different units are distinct. 

The initialization code of a unit is implicitly executed before the Importing client Is 
started, and the termination code is executed immediately after termination of the 
importing client. 

Example 3.2 

PROGRAM QueueUser; 

USES Queue; 

VAR info : InfoEntry; 
ok : BOOLEAN; 

BEGIN (• QueueUser •) 

(• interface objects of unit Queue •) 
(• are visible within the program _•) 

(• type from unit Queue •) 

(• impli cit initialization of unit Queue •) 

Enterinfo(info, ok); (• procedure from unit Queue •) 

Removeinfo(info, ok): (• procedure from unit Queue •) 

END. (• QueueUser •) 
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Apparently, the separate compilation concept in UCSD Pascal has been influenced 
by the simplicity of its implementation, probably a too simple one. The compiler on 
the UCSD p-System does not save a symbolic Interface description of a unit. 
Instead, it copies the whole text of the interface part on the object code file. When a 
unit is used this file is read again and the Interface declarations are inserted as text 
into the declaration part of the using client. Objects of other units which are 
referenced by an interface part are not described on the obJect code file. It is 
therefore necessary to import (use) also those units needed for the Interface 
description of an imported unit, and it is necessary that the units are imported in a 
sequence which respects the declaration rule which reqires that an object must be 
declared before Its use. 

Another disadvantage of the separate compilation concept in UCSD Pascal is that 
interface and implementation part belong together textually. Upon each 
recompilation of a unit, the interface description on the object code file is renewed. 
This prohibits easy checking of the rule that all clients of a unit must be recompiled 
when its interface has been changed. The compiler does not check this at all, and 
there is also no check provided by the linker. Therefore, it may easily occur that 
code units are linked whose Interface references are incorrect. Full responsibility is 
again with the programmer. The only way to guarantee that all Interfaces are 
correctly used would be to recompile all units and programs which import a 
recompiled unit, and this is very inconvenient. It is a pity to loose the advantages of 
separate compilation upon linking because of a merely too simple concept. 

3.2 Mesa 

The Mesa programming language has been designed and implemented at the Xerox 
Palo Alto Research Center. In the language manual [Mit79) it is characterized by the 
following abstract: 

"The Mesa language is one component of a programming system intended for 
developing and maintaining a wide range of systems and applications programs. 
Mesa supports the development of systems composed of separate modules with 
controlled sharing of information among them. The language includes facilities for 
user-defined data types, strong compile-time checking of both types and interfaces, 
procedure and coroutine control mechanisms, and control structures for dealing 
with concurrency and exceptional conditions." 

The design of Modula·2 was, in addition to Pascal and Modula, also Inspired by 
Mesa. Especially the separation of the Interface definition from the actual 
implementation was a hint in the right direction for the design of the separate 
compilation concept in Modula·2. 

Separate compilation units in Mesa are called modules. There are two kinds of 
modules: definitions modules which define the Interface of a separate part, and 
program modules which contain actual data and executable code and which 
possibly export an Interface. 

Example 3.3 

Queue : DEFINITIONS g 

BEGIN 
-- interface elements 
Enter : PROCEDURE [info : InfoEntry] RETURNS [ok 
Remove : PROCEDURE RETURNS [info : InfoEntry, ok 
-- non-interface elements 
InfoEntry : TYPE = RECORD [ -- some fields -- ); 

END. 

BOOLEAN]; 
BOOLEAN]; 

DIRECTORY Queue : FROM "queue"; connection to a symbolic 
interface description 

BufferQueue : PROGRAM EXPORTS Queue 
BEGIN 

OPEN Queue; 

buffleng : CARDINAL = 128; 
Bufferindex : TYPE a [0 

open visibility of public 
names of module Queue 
constant 

buffleng-1]; -- type 

29 

enter : CARDINAL~ 0; --variable with initialization 
remove CARDINAL~ 0; --variable with initialization 
buffer : ARRAY Bufferlndex OF InfoEntry; variable 

Enter : PUBLIC PROCEDURE [info : InfoEntry] 
RETURNS [ok : BOOLEAN] E 

BEGIN 
ok ~ (enter + 1) MOD buffleng # remove; 
IF ok THEN 

BEGIN 
buffer[enter] ~ info; 
enter ~ (enter + 1) MOD buffleng; 

END; 
END; -- procedure Enter 

Remove : PUBLIC PROCEDURE 

END. 

RETURNS [info : InfoEntry, ok BOOLEAN] • 
BEGIN 

ok ~ enter # remove; 
IF ok THEN 

BEGIN 
info ~ buffer[remove]; 
remove ~ (remove + 1) MOO buffleng; 

END; 
END; -- proce~ure Remove 



A program module is a separately compiled program part consisting of data 
definitions and of code statements. Access to its objects from outside the module 
boundaries is controlled by access attributes which are assigned to each name 
defined in the module. An object is either private or public. Private objects are 
known within the defining module only. Public objects may also be accessed from 
other separate modules, if they Import the module. Objects are assumed to be 
private, unless they are explicitly specified to be public. 

Import of separate modules is achieved by specifying module names in the import 
list in the heading of a module. The public objects of an imported module are, 
however, not directly visible inside. Instead, their names must be preceded by the 
module's name (qualification). By stating an open clause at the beginning of the 
block, the public objects become directly visible (consider qualified export and from 
import in Modula·2). 

In principle, program modules would satisfy all needs for separate compilation. But, 
of course, recompiiation of a separate program module would be very Inconvenient 
for its clients, because a specific compilation order must be respected and therefore 
importing modules must be recompiled too. In order to avoid unnecessary 
recompilation, Mesa provides the definitions modules which represent the interface 
extraction of a program part. 

Usually, a definitions module is a collection of definitions of publicly accessible 
objects, defined in a program module. These are variables, procedures, and signals. 
They are called interface elements. Procedures must be specified with their 
parameter list only. Variables may be declared as read-only variables. This prohibits 
assignment to the variables from outside. Apart from the interface elements which 
represent actually existing objects of a program module, a definitions module also 
may contain so·called non-interface elements. These are compile·time constants, 
i.e. constant and type definitions, which are the definitions module's own obJects. 
They must not be redeclared in the program module. According to the purpose of a 
definitions module the access attribute Is set to public by default, and private objects 
must be specified explicitly. 

In contrast to Modula-2, definitions modules in Mesa are not implicitly coupled with 
program modules. The names of the definitions module and the corresponding 
implementation are different. A program module must explicitly mention a 
definitions module In its export list. This means that it exports an Interface, i.e. the 
interface elements of the indicated definitions module. For this purpose public 
variables, procedures, and signals must match in type and name with interface 
elements. 

As described so far, the separate compilation concept of Mesa Is not essentially 
different from that of Modula-2. Mesa, however, provides some further features. It 
allows that a program module implements only a part of an exported interface. 
Therefore, a definitions module may be implemented by several program modules. 
On the other hand it is also possible that more than one interface is exported by a 
program module. A module may also Import another module more than once, I.e. 
several instances of a module may exist upon execution of the program. This Is a 
powerful feature. Consider for example that a program requires two different 
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queues. In this case the queue module would be imported twice and identified with 
two different names. Each instance would have its own set of data It is even 
possible to supply two different implementations of the Interface. 

Example 3.4 

DIRECTORY Queue : FROM "queue"; 

MultiQueueUser : PROGRAM 
IMPORTS firstQueue : Queue, 

secondQueue : Queue 
BEGIN 

ok : BOOLEAN; 

i nfo : Queue.InfoEntry; 

ok ~ firstQueue.Enter[fnfo]: 
[info , ok] ~ ffrstQueue.Remove: 

ok ~ secondQueue.Enter[info]: 
[info, ok] ~ secondQueue.Remove; 

END . 

connection to a symbolic 
interface description 

Import of two Instances 
of the same interface 

access non-interface elements 

access to Interface elements 
of the first queue 

access to interface elements 
of the second queue 

A module instance is not implicitly initialized when a program Is started. The 
initialization is delayed until any of its exported procedures is called for the first time. 
At that moment, first the variable inilializations and, afterwards, the statements of the 
module body are executed. Another possibility is to explicitly Initialize a module by a 
start statement. This gives full control on the initialization phase to the programmer. 

All these and further features cover a wide range of needs for complex program 
applications. They look quite nice, but they also have their price and complicate the 
normal use. Before execution of a program, It is necessary to combine the separate 
modules and to set up the connections according to the export and the import lists. 
This is done by a so-called binder. According to the complexity of the possible 
combinations, a special configuration language has been designed. This language 
Is called C/Mesa. It has a Mesa-like syntax, but its own semantics. It allows to 
describe program configurations, i.e to specify which program modules export 
which interfaces, which instance of a module should be substituted to a client, an so 
on. A C/Mesa program is interpreted (processed) by the binder and the resulting 
output is a program code which is ready for execution. 

In the simplest case, a configuration description lists the names of all program 
modules which must be bound together. An instance of each named module will be 
part of the program configuration, and if a module imports any interfaces, they will 
be supplied by those which are exported from other modules of the configuration. A 
program module may be assigned to be the control component of the program. This 
means that it must be initialized first when the program is started. II may be 
considered as the main program of the configuration. 



Example 3.5 

Qu eueProgram : CONFIGURATION 
CONTROL SingleQueueUser 
BEGIN 

BufferQueue; 
SingleQueueUser; 

END. 

-- main program 

exports Queue 
imports Queue 

The simple appearance of the above configuration description Is achieved by the 
use of default conventions. For more complex applications this is no longer 
appropriate. To prevent mis-interpretations, the generation of a module's instances 
and their assignment to importing clients must explicitly be stated. 

Example 3.6 

QueueProgram : CONFIGURATION 
CONTROL MultiQueueUser = 
BEGIN 

buffer : Queue ~ BufferQueue[]; 
list : Queue~ ListQueue[]; 
Mult1QueueUser[buffer, list] ; 

END. 

-- main program 

first instance of Queue 
second instance of Queue 

Compared with Modula·2, the separate compilation concept of Mesa is more 
complex. The language supports features which might be useful for some special 
applications, but are rarely used by most programmers. The price for all these 
capabilities Is not low and must be paid by the implementation as well as by the 
users. 

One important difference between Modula·2 and Mesa concerns the interface 
specification. In Modula·2 the Interface of a separate module is specified In the 
definition module and this is the only valid reference for all importing clients, and 
also for the corresponding implementation module. Definition module and 
implementation module are considered as complementary parts of a separate 
module. In Mesa, however, an interface is conceptlonally provided {exported) by a 
program module and definitions modules are considered as supplementary 
constructions which summarize an Interface specification for clients and therefore 
reduce the dependency on local modifications of a program module. As a 
consequence, the language allows that an interface represented by a definitions 
module may partially be exported by several program modules, and that a program 
module exports objects which are specified in different definitions modules. A 
programmer does not get complete information from definitions modules only. For 
binding a program, he explicitly needs information about the actual implementations 
of the involved program modules. Possible ambiguities must be resolved by explicit 
assignments in a configuration description. 
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3.3 Ada 

In 1975 a competition for the design of a new programming language was started by 
the United States Department of Defense. The main goal was to establish a "single 
high order computer programming language appropriate for Department of Defense 
embedded computer systems". The language should support the programming of 
large scale and real time systems, and programs written in this language should also 
be easily portable. As result of a four year period of alternating design, evaluation, 
and requirement refinement phases emerged the programming language Ada 
[Ada80] which was designed by Cll Honeywell Bull under the leadership of J.D. 
lchbiah. 

The programming language Ada primarily includes facil ities of general purpose 
high·levei languages with procedure and module structures, with parallel processing 
facilities, and with separate compilation. Apart from these features the language 
also Includes facilities for specialized applications. Separate compilation In Ada is 
based on the concepts Introduced and Implemented for the programming language 
LIS [lch77]. 

Program units in Ada are subprograms (procedures and functions), tasks (for 
parallel processing), and packages {modules). They all may be compiled separately. 
A package in Ada Is the equivalent to the module in Modula-2. It is generally split 
Into a package specification and a package body which must have the same name. 
The interface of a package must be specified in the package specification which 
may contain declarations of constants, types, variables, and program units. All 
objects declared in a package specification are visible, i.e. they may be referenced 
from program units declared outside the package. They are made directly visible in 
a program unit, If the package name is listed in a use clause. A package body 
complements the package specification. It is only necessary, if the package 
specification contains declarations of program units. The package body must In this 
case contain the bodies of these program units. It may contain further declarations 
and program units which are invisible outside the package. The statement part of a 
package body serves for initialization. 

Example 3.7 

PACKAGE Queue IS 

TYPE InfoEntry IS 
RECORD 

-- some fields 
END RECORD; 

PROCEDURE Enterinfo(info: IN InfoEntry; ok: OUT Boolean}; 

PROCEDURE Removelnfo(fnfo: OUT InfoEntry; ok: OUT Boolean}; 

END Queue; 
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PACKAGE BODY Queue IS 

buffleng : CONSTANT := 128; - - constant 

TYPE Bufferindex IS RANGE 0 buffleng-1; - - type 

enter : Bufferindex := 0; --variable with initialization 
remove Bufferindex := 0; --variable with initialization 
buffer : ARRAY (Bufferindex) OF InfoEntry; -- variable 

PROCEDURE Enterinfo(info: IN InfoEntry; ok: OUT Boolean) IS 
BEGIN 

ok :• (enter + 1) MOD buffleng /= remove; 
IF ok THEN 

buffer(enter) :• info; 
enter := (enter + 1) MOD buffleng; 

END IF; 
END Enterinfo; 

PROCEDURE Removeinfo(info: OUT InfoEntry; ok: OUT Boolean) IS 
BEGIN 

ok : = enter / = remove; 
IF ok THEN 

info : = buffer(remove); 
remove : = (remove + 1) MOD buffleng; 

END IF; 
END Removelnfo; 

END Queue; 

In package specifications, it is possible to hide the structure of a type to external 
users of the package by declaring a private type. In this case the package 
specification must contain a privata part where the private type is completely 
declared. Private types are the equivalent to Modula·2's opaque exported types. 
The two concepts mainly differ in the place where the hidden structure of the types 
must be declared. In Modula·2 this place has been chosen according to the prfciple 
that implementation details should consequently be separated from the interface 
specification. The price paid for this decision, however, Is a restriction of opaque 
export to pointer and integer types. In Ada a restriction for private types is avoided. 
As a consequence, Implementation details must be specified In the package 
specification, I.e. the user knows about the actual type structure. A disadvantage of 
this concept is that any change of a private type implies a modification of the 
package specification, and this may be Inconvenient for the users of the package. 

Example 3.8 

PACKAGE SimpleFile IS 

TYPE File IS PRIVATE; 

PROCEDURE Open(f: IN OUT Fi le); 
PROCEDURE Close(f: IN OUT File); 

PROCEDURE Read(f: IN File; ch: OUT Character); 

PRIVATE -- complete declaration of private type 'File' necessary 

TYPE FileDesc IS RECORD .. .. END; 
File IS ACCESS FileDesc; 

END SimpleFile; 
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Ada programs may be compiled separately. Each program is a collection of one or 
more compilation units which are said to belong to a program library. (The 
language, however, does not specify the organization of a program library.) 
Compilation units are package specifications, package bodies, subprogram 
declarations, and subprogram bodies. This allows partitioning of a program on the 
global level (as with Modula-2). If a package or a subprogram of the program library 
is referenced by a compilation unit, this must be indicated in a with clause at the 
beginning of the compilation unit. 

Example 3.9 

WITH Queue; 
PROCEDURE QueueUser IS 

USE Queue; 

info : InfoEntry; 
ok : Boolean; 

BEGIN 

Enterinfo(info, ok); 

Removelnfo(info, ok); 

END QueueUser; 

-- imports Queue 
-- main program 
--for direct visibility 

Ada also provides separate compilation of nested program units, so-called subunits. 
A subunit is a body of a subprogram, task, or package whose interface Is specified In 
the outermost declaration part of another compilation unit and whose separate 
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compilation of the body is indicated by a body stub. The original environment of the 
body stub must be saved by the compiler, and it must be reconfigured when the 
subunit is compiled. A subunit may refer to all objects visible In lts environment. As 
a consequence, after recompilatlon of a compilation unit all its subunits must be 
recompiled as well. 

Example 3.10 

Package Queue implemented as a subunit 

PROCEDURE QueueUser IS 

PACKAGE Queue IS 
-- interface specifications 

END Queue; 

PACKAGE BODY Queue IS SEPARATE; 

- - declarations 

BEGIN 

END QueueUser; 

SEPARATE(Queue) 
PACKAGE BODY Queue IS 

-- implementation of Queue 
END Queue; 

-- body stub 

-- subunit 

Compared with Modula-2, the separate compilation concept of Ada mainly differs in 
the support of subunits. This Is probably a nice feature to support the development 
of block-structured programs, I.e. it is most useful for programming in Pascal-style 
without using the facilities for modular programming. This Is, however, not the 
appropriate style for programming large scale systems. For modularized programs, 
it is not crucial to have the possibility to compile objects within a focal environment 
separately. On the contrary, separate compilation on the global level is appropriate 
and adequate for a large number of applications. In view of the additional complexity 
in the compiler, caused by saving and restoring the environment of a subunit, it 
seems that separate compilation of subunits Is not worth to be supported. 
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4 Implementation of Separate Compilation on Lilith 

A necessary pre-condition for a successful implementation of separate compilation 
is a powerful concept of the programming language. In addition, the quality of an 
implementation is mainly detennnined by the support of the compiler, of the operating 
system, and also of the code architecture of the target machine. 

A convenient and heavily used implementation is running on the personal computer 
Lilith. The compiler perfonnns complete checking among separate program parts 
and provides version control on the module interfaces. This is achieved by encoding 
the interface infonnnation on symbol fifes. The Lilith architecture supports separate 
compilation by appropriate addressing and code features. This allows the compiler 
to generate efficient and almost definitive code. Finally, the operating system well 
supports linking, loading, and execution of programs such that program 
development and execution is very comfortable for the programmer. 

4.1 General Implementation Concept 

Separate compilation with full type checking among separate program parts requires 
that Interface infonnnation about the separate parts must be available to the compiler. 
Supplying the interface infonnnation in the fonnn of source text would insufficiently 
regard the security aspects of separate compilation, because it is very important that 
all compiled program parts refer to Identical infonnnation about a separate part. A 
better method for reliable version control is to supply the interface infonnnation in the 
fonnn of a symbolic interlace description which has been generated by the compiler 
Itself and represents an extraction of the compiler's Internal symbol table. 

The implementation of this concept is facilitated by the separate compilation 
concept of Modula·2 which splits the interface definition of a separate module from 
its actual Implementation. The symbolic interface description can be generated 
upon compilation of the definition module. The Modula·2 compiler on Lilith writes 
this infonnnation on a symbol file and considers this file as the only valid 
representation of the definition module for subsequent compilations. The symbol file 
is needed for the compilations of the corresponding implementation module and all 
compilation units (i.e. definition and Implementation modules) which import the 
separate module. 

This implies the simple rule that before a compilation unit can be compiled, all 
symbol files of the Imported modules must exist, I.e. the corresponding definition 
modules must have been complied previously. For a correct sequence of 
compilations, it is in particular very important to respect the dependencies of other 
modules when definition modules are recompiled. As soon as all symbol files of a 
program have been generated, it does not matter in which sequence the 
implementation modules are complied. This makes programming flexible and allows 
fast modifications and recompilations of program parts. 

The recompilation of a definition module implies that a new version of the 
corresponding symbol file is generated, because a change of the module's interface 
must be assumed. This means that all compilation units which Import from this 
module must be compiled again. This might be very Inconvenient when a basic 
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definition module of a large system is modified and a recompilation of the whole 
software is forced. Another philosophy, however, like updating an existing symbol 
file, if the new definition module is a true extension of the old one, would be too 
dangerous and end in chaos sooner or later. 

It is obvious that upon compilation, and also when the the code parts are combined 
to a program. it must be checked that the correct sequence of compilations is 
respected and that ali references to a separate module are based on the same 
interface information, i.e. the same symbol file version. For this purpose the 
compiler generates a time stamp, called module key, upon compilation of a definition 
module and includes it on the symbol file. Together with the name of the module, the 
module key allows exact identification of a certain version of a separate module. 

Upon compilation of an implementation module the compiler writes the generated 
code of the separate module on an object file. It also copies the module key on the 
object file. This allows identification when the code is combined for execution. A 
simple and quick check on matching module keys ensures the correct use of the 
interfaces. No complex checks are necessary now; these were previously 
performed upon compilation. 

4.2 Organization of the Symbol Files 

For the generation of the symbol files two questions are important: What kind of 
information should be contained on the symbol file and what kind of format Is 
appropriate to describe this information? This section describes the considerations 
which guided the definition of a symbol file format for the Modula-2 compiler. A main 
goal was a simple solution which does not enlarge the compiler unnecessarily. 

4.2.1 Contents 

As mentioned above, the symbol files must contain the module key of the described 
separate module and also the names and the module keys of the separate modules 
which are imported by the definition module. This infonmation Is needed to check 
the compatibility of the different interface descriptions. 

The symbol file further must describe all objects which are declared in the definition 
module. These object descriptions usually represent a superset of the interface 
information needed for the compilation of importing compilation units. For the 
compilation of the corresponding implementation module, however, a full description 
of the definition module is needed. It is therefore necessary to indicate on the 
symbol file which of the described objects belong to the interface and may be 
referenced by the importing clients. 

The objects described on the symbol file must be well defined. This means that 
attributes assigned to the objects upon compilation of the definition module must be 
indicated on the symbol file. Their values are considered as definitive and must be 
respected in ail compilations to which the symbol file Is supplied. Assigned 
attributes are, for example, the size of data types, the offsets of record fields, and the 
address offsets of the variables. These values are needed for code generation In 

39 

Importing modules. For code generation, the address offsets of the exported 
procedures would also be interesting. But these are not to determine when a 
definition module is compiled (the procedure bodies are specified in the 
implementation module). Instead, procedure numbers are assigned to the 
procedures and written on the symbol file. For code generation in importing 
modules, these procedure numbers may be used as provisional references to the 
procedure code, which must be updated when the different code parts are combined 
to a program. 

Another important fact for the contents of the symbol file is that types in Modula-2 
are only compatible by declaration and not by structure. Two different type 
declarations with the same type structure are considered as incompatible. 
Therefore it is to guarantee that a type description on the symbol file keeps its 
identity, I.e. its name and the module environment where it is declared. An imported 
type cannot be replaced by an implicitly declared local type with the same structure. 
Apart from the objects declared in the definition module, a symbol file therefore also 
describes types which are imported from other modules. 

It is very important for convenient use of separate compilation that the information 
on the symbol file is complete. A programmer would be disappointed, if he had to 
supply symbol files for modules which are not directly imported by a compilation 
unit. This is confirmed by experience gained with the use of the UCSD p-system. In 
this system, the compiler requires that infonmation about separate units which are 
used by other imported units is explicitly supplied. This is really disturbing for the 
programmer. 

4.2.2 Format 

The symbol file mainly consists of information which is stored by the compiler in its 
symbol table. A first idea for the generation of the symbol file could be to write an 
exact copy of the symbol table on the file. This is a fast and efficient generation 
method, but it does not consider the reading of the symbol files. Upon other 
compilations it should be possible to restore the saved infonmation, or at least a part 
of it, into the actual symbol table. The saved symbol table entries, however, cannot 
be restored at the same place as in the original symbol table. The references 
between the symbol table entries must be reassigned and this makes the integration 
process heavy and complex. 

A better idea is to select the needed infonmation in the original symbol table and to 
write it on the symbol file in a fonmat which facilitates its restoring. If we consider 
that a compiler has procedures which parse the source text and generate symbol 
table entries of the declared objects, it is obvious to choose a format of the symbol 
file which is similar to the language syntax and which may be parsed by the same 
compiler routines. According to the fact that symbol files are more often read than 
generated, this method facilitates the Integration of the symbol files at the expense 
of their generation. A further advantage is that the symbol files do not depend on 
Internal compiler structures and therefore are not affected by changes of the symbol 
table representation. 

These considerations lead to the definition of a symbol file format for the Modula-2 



compiler (see Appendix 2) similar to the Modula-2 syntax for definition modules. It is 
a sequence of so-called symbol modules with module key, import and export list, and 
a sequence of declarations. The keywords are encoded in symbols and the object 
declarations are expanded with size and address information. The last symbol 
module on a symbol file represents the complete definition module. The preceding 
symbol modules represent the subset interfaces of the Imported modules containing 
the descriptions of the types which are imported by the definition module. Within 
each symbol module it is important that the declaration rules of Modula-2 are 
respected. The declaration of an object may only reference objects which have 
been declared previously (except for pointers). This allows straight forward parsing 
by the compiler. How the Modula-2 compiler handles the symbol files is described In 
Chapter B. 

4.3 The Lilith Architecture for Separate Modules 

The Modula-2 compiler on Lilith generates code for a so-called M-code machine. 
The M-eade, which is encoded in microcode on Lilith, was designed to support the 
language structures of Modula-2. It enables the Modula-2 compiler to generate 
short, efficient, and almost definitive code. This section describes some aspects of 
the M-code and the Lilith architecture which are important for the separate 
compilation. For a complete and detailed description of the M·code and the Lilith 
architecture refer to [Wir81] and [Jac83]. 

The separate compilation concept of Modula-2 is well supported by the Lilith 
architecture. Each separate module may be loaded as a unit consisting of a data 
frame for its global data and a code frame for the code of its procedures. A global 
table, the data frame table, holds the addresses of the data frames of the loaded 
separate modules. A reference to the code frame of a separate module is stored in 
the first word of its data frame. All separate units are accessible via the data frame 
table, and the index of their entry in this table is used for their identification in the 
code. It is called the module number. M-code instructions which allow access to the 
data frame and the call of procedures from other separate modules contain as 
reference this module number (load external, store external, call external). 

Very important for the code generation are the available addressing modes in the 
target code. It is desirable that a compiler generates almost definitive code which 
does not require a lot of additional updates when the code of the separate modules 
is combined to a program. This may be achieved by addressing code and data 
relatively. 

The Lilith architecture enables relative addressing with a set of address registers. 
The currently executed instruction Is addressed by the PC register {program 
counter) which is defined relatively to the beginning of the code frame of the 
corresponding separate module. The address of this code frame Is held by the F 
register (code frame address). The address of the data frame of the same module Is 
assigned to the G register (global data frame address). Code and global data 
addresses within the own module can therefore be assigned definitively by the 
compiler. If a procedure of another separate module Is called, new values are 
implicitly assigned to the F and G registers. The Lilith architecture tor addressing 
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separate modules is illustrated in Figure 4.1. 

M·code instructions for calling procedures do not contain an address offset. 
Instead, a procedure number must be specified. This is an index to the procedure 
entry table which must be included at the beginning of the code frame and contains 
the address offsets of all procedures of the module. 

The Lilith architecture is well suited not only for local references. Also the code for 
external references may be generated almost definitively. It is possible to insert the 
information contained on the symbol file directly. These are the procedure numbers 
for procedure calls and the address offsets for access to variables. Only the module 
numbers cannot be assigned definitively. For program execution the actual Indices 
to the data frame table are needed which are only known when the modules are 
loaded. Instead of the actual module numbers of the loaded code, the generated 
code contains provisional module numbers which must be updated by the 
linking· loader. Examples of M·code instructions for external references are given In 
Figure4.2. 

4.4 Program Linking, loading, and Execution 

Modula-2 programs on Lilith run under the Medos-2 operating system [Knu83]. 
Medos-2 itself is written in Modula-2 and consists of several separate modules. 
Some of these modules represent the public interface of Medos-2. From Modula-2 
programs it is therefore easy to call functions of the operating system and, of further 
advantage, the compiler can check whether the interface is correctly used. The 
most important modules of the Medos-2 Interface are the module FileSystem, the 
module Terminal, and the module Program. The fanner two modules support 
input/output, the latter supports memory layout and program linking, loading, and 
execution. 

Generally, a program consists of a main module (i.e. the main program) and of all 
separate modules that are (directly or Indirectly) Imported by the main module. The 
fact that the code generated by the compiler is almost definitive allows to collect and 
combine the needed modules when the program is loaded. No explicit previous 
linking is necessary. This is respected by the complier which writes the code onto 
the object file in a format as it Is expected by the linking-loader of Medos-2 (see 
Appendix 3). 

Apart from the code information, the object file also contains an interface table and 
fix-up lists. Both of them are interpreted by the linking-loader. The Interface table 
consists of pairs of module names and module keys. The first entry Identifies the 
module represented by the code itself, the other entries indicate which separate 
modules are imported by this module. The fix-up lists refer to places in the code 
where the provisional module numbers must be updated. 

Upon loading of a module, the linking-loader first determines Its actual module 
number (index to the data frame table) and the actual module numbers of the 
Imported modules, and then it enters the addresses of the data frame and the code 
frame. After loading the code, it executes the fix-up commands. The provisional 
module numbers in the code correspond to the module references in the Interface 
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table. They are replaced by the actually assigned module numbers. Afterwards, the 
linklng·loader loads the imported modules (as far as they are not already loaded) and 
checks the module keys to approve that the modules are compatible. 

After all needed modules are loaded, the execution of the program is started by a call 
to the main module. According to the implicit initialization of local modules, a 
separate module first calls the Initialization parts of the Imported modules before Its 
body is executed. A special code sequence guarantees that each module is 
initialized only once. 

Medos·2 applies a stack principle to the program execution. It allows a program to 
call another program, which is immediately loaded and started like a procedure. 
Medos·2 may be considered as the first entry In the program stack. If upon calling a 
new program some of the imported modules have already been loaded with another 
program on the stack, the linking-loader takes their module numbers for the updates 
in the code. Generally, a module cannot be loaded twice. 

During its execution, a program may require certain resources which are controlled 
by the operating system (e.g. memory space In the heap for Its pointer-referenced 
data). Normally, this resources are automatically reclaimed by the operating system 
after termination of the program. In some cases, however, it makes sense that 
resources are shared by several programs (e.g Information stored in the heap). For 
this purpose, Medos-2 provides a sharing facility. Upon calling a program, it must be 
indicated whether or not the called program should share its resources with the 
caller. 

The sharing facility Is, for example, used for the execution of the Modul!l-2 
multi-pass compiler (see Chapter 5). Several compiler parts are called sequentially 
from a common compiler base, while the information stored in the heap survives and 
the connected files remain opened. 
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5 Overview of the Modula-2 Compiler 
The Modula-2 multi-pass complier on the personal computer Lilith has been 
developed at the lnstitut in the t ime from 1977 to 1980. It is written In Modula-2 itself 
and uses heavily the separate compilation facility. This chapter f irst gives a short 
review on the most important development steps, and then it describes the overall 
organization of the Modula-2 compiler. The Internal structure of the compiler and 
the functions of the compiler parts are described in the subsequent chapters. 

5.1 History of the Compiler Development 

The design of the programming language Modula·2 was started in 1977. The 
language design was accompanied by an implementation effort on a POP-11/34 
computer. 

The starting-point for the development of the Modula·2 compiler was the seven-pass 
compiler for the programming language Modula [Wir77] (from here on called 
Modula-1), which was designed and implemented for the PDP-11 by Le Van Kiet 
between 1975 and 1977. This Modula·1 compiler Is described in [Le78] . 

Step by step the Modula·1 compiler was changed to a Modula-2 compiler written in 
Modula·2 itself. The first step was the implementation of pointer types and record 
types with variants. A restructuring of the compiler followed by using pointers and 
variant records for the representation of the symbol table. In the next steps further 
extensions and changes from Modula·1 to Modula·2 were implemented and applied 
in the compiler (e.g. for-statement, value parameters Instead of constant 
parameters). At the same time the number of compiler passes was reduced to five. 
By the end of 1978, a first version of the Modula·2 compiler for the PDP·11 was 
completed. It accepted the language as described in the first Modula·2 report 
[Wir78]. 

The next development goal was the implementation of separate compilation, which 
again needed several boOtstrapping steps. In a f irst phase, the compiler was 
extended to accept definition modules, to handle the symbol files, and to generate 
relative code. It was also necessary to develop a program linker and a new basic 
executive system on which the separately compiled programs are executed. 
Afterwards, the compiler passes were split into separate modules. This allowed to 
test the appropriateness and usefulness of the new facility. An advantage for the 
Internal security of the compiler was that now all compiler parts could refer to a 
unique definition of the commonly used data structures. This work was finished by 
the end of 1979. This compiler version accepted the language described by the 
second Modula-2 report [Wir80]. 

In the meantime a cross·compiler proJect for the new personal computer Lilith 
[Wir81] was started as well. A goal of this proJect was to keep the f irst three passes 
of both compilers as similar as possible. The code generation part was rewritten 
from scratch and compressed into one pass. 

With the cross-compiler it was possible to develop the software for the operating 
system of Lilith using the PDP·11 . In the summer of 1900, the Ulith hardware and the 
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operating system Medos-2 were developed to a state which allowed to transport and 
run the Modula-2 compiler on the new computer. After this first Implementation on 
Lilith, the compiler was consolidated and Improved. Apart from error corrections, 
also Inappropriate ~inherited" structures and names were changed. This sometimes 
turned out to be time consuming when the basic structure of the compiler was 

touched. 

In this paper the current state of the Modula·2 compiler on Lilith is reported. Most of 
the description is also valid for the compiler on the PDP·11 . The actual language 
reference is contained in [Wir82]. A user's guide and a list of the compiler's error 
messages is contained in the Lilith Handbook (Gei82]. 

5.2 Compiler Parts 

The Modula·2 multi·pass compiler Is divided into several parts. For its execution, the 
feature of shared program calls (see section 4.4) Is used. A base part, which 
remains loaded during the whole compilation time and In which the global compiler 
data are declared, controls the compilation process and calls subseQuently the other 
compiler parts, i.e. the initialization part, the various passes, and the listing 
generator. The names and the duties of the various compiler parts are: 

Modula 
Initialization 
Pass1 
Pass2 
Pass3 
Pass4 
Symfile 
Uster 

Base part, common data, control of the compilation process. 
Initialization of output files. 
Syntax analysis. 
Declaration analysis. 
Body analysis. 
M·code generation. 
Symbol f ile generation. 
Listing f ile generation. 

The decomposition of the compiler parts into separate modules and the structures 
and functions of these modules are described in Chapter 8. 

Information transfer between the compiler passes Is based on inter-pass files and on 
the symbol table. On the inter·pass f iles a symbolic skeleton of the compiled unit Is 
transmitted. The symbol table Is stored in the heap of the memory and resides there 
during the whole compilation process. It describes the declared obJects and Is a 
large networK of mainly two kinds of entries: name entries tor the representation of 
objects and structure entries for the representation of data structures. The handling 
of these global compiler data is described in Chapter 6 and Chapter 7. 

The following table shows some figures about the size of the Modula·2 compiler. For 
each compiler part it lists the number of separate modules, the number of source 
text lines (definition and implementation modules), and the memory space needed 
for code and global data. More details aboUt the size of the compiler modules are 
given in Appendix 6. 
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Modula 6 modules 1177 lines 1.97 lcword 
Initialization 4 modules 1008 lines 1.88 kword 
Pass1 8 modules 3299 lines 6.46_kword 
Pass2 5 modules 3479 lines 5.91 kword 
Pass3 4 modules 2887 lines 4.92 kword 
Pass4 7 modules 3832 lines 7.80 kword 
SymF11e 3 modules 837 lines 1.08 kword 
L1ster 2 modules 618 lines 2.17 kword 

----------------- ---------- ----------- -----------
Modula-2 Compiler 38 modules 17137 lines 32.23 kword 

Upon execution, the base part Modula and one of the other compiler parts are 
loaded. The space needed in the heap of the memory (e.g. for the symbol table) 
depends on the size and complexity of the compiled unit. For compiling a large 
compilation unit (2000 lines), abOut 10 kword are needed In the heap. 

5.3 Compiler Execution 

Source text units accepted by the compiler for compilation (i.e. compilation units) 
are, according to the Modula·2 syntax definition, definition modules, implementation 
modules, and separate moduleS without export. Apart from the input file with the 
source text, the compiler requires the symbol files of the imported modules. 

The kind of the compiled unit and the success of the compilation process determine 
which compiler parts are called and which output files are generated by the 
complier. Generally, Initialization is the first and Lister, which generates the program 
listing of the compiled unit, is the last called part. In between, (some of) the compiler 
passes are called subsequently. If not all needed symbol files are available, the 
compilation is immediately stopped in Passl, and no output file is generated. 

For definition modules the compilation process stops after Pass2 and, if no errors 
had been detected so far, the compiler part Symfile is activated to generate the 
symbol file. 

For other compilation units. Pass2 generates a reference life which describes the 
structure of the compiled unit and is used by the post-mortem debugger. Pass4 is 
called, if no error has been detected by the f irst three passes. It translates the 
compiled unit into M·code and writes the generated code on the object file. 
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6 Global Compiler Data 
Data types and variables which are commonty used by the compiler parts are 
declared and exported by a separate module (MCBase) of the compiler base part 
Modula. Information about the compiled unit Is stored In the identffler table, on the 
inter-pass files, and in the symbol table. 

6.1 Identifier Table 

The multi-pass organization of the complier requires that the obJects declared in the 
compilation unit be recognized In the different passes. Instead of passing Identifiers 
to the subsequent passes, they are stored by Passl in an identifier table and 
replaced by a number, called spelling index. Replacing the identifiers by numbers Is 
also reasonable for searching an object in the symbol table, because It Is easier and 
faster to compare numbers Instead of strings. Further, the compiler is not forced to 
restrict the number of significant characters In the Identifiers for Implementation 
purposes. 

Identifiers are no longer internally used after Passl, but they are needed again for 
identification on some output files (the symbol f ile and the reference file). This 
means that the identifier table must survive Passl. For historical reasons (limited 
memory space on the PDP·11 ), this table is not declared In the base part. Instead, it 
is dumped on a compiler work file, called ASCII, and the spelling indices refer to the 
position of the identifiers in this f ile. The file is used by Pass2 and the symbol f ile 
generation part Symfile. 

6.2 Inter-pass Files 

The scanner of Passl transforms the source text of the compilation unit Into a 
sequence of symbols which represents the syntactical structure of the module. 
Each compiler pass reads, processes, and modifies this information and proceeds 
the remaining skeleton to the subsequent pass. For passing the symbol sequence to 
the next compiler pass, it is written on an inter-pass file. For this purpose the 
compiler alternately uses the work files Ill and IL2; Ill between Passl and Pass2 
and between Pass3 and Pass4 or Lister, IL2 between Pass2 and Pass3 or Lister and 
between Pass4 and Lister. 

The symbols are encoded according to the global compiler type Symbol which 
reflects the syntactical units of Modula-2: 

Symbol • 
(eop, 
andsy, divsy, times, slash, modsy. notsy , plus. minus, orsy , 
eql, neq . grt, geq, l ss , leq, insy, 
lparent, rparent, lbrack, rbrack, lconbr, rconbr, 
comma, semicolon, period, colon, range, 
constsy , typesy, varsy, 
arraysy, recordsy, variant , setsy, pointersy , tosy, arrow, hidden, 
importsy, exportsy, fromsy, qualff1edsy, 
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codesy, begfnsy, 
casesy, ofsy, ffsy, thensy, elsffsy, elsesy, loopsy, exftsy, 
repeatsy, un tilsy, whilesy, dosy, withsy, 
forsy, bysy, returnsy, becomes, endsy, 
call, endblock, 
definftfonsy, implementationsy, proceduresy, modulesy, symbolsy, 
ident, intcon, cardcon, fntcarcon, realcon, charcon, stringcon, 
option, errorsy, eol, 
namesy, 
field, anycon ) 

In addition to this code, each symbol contains a position number which refers to the 
position of the represented item within a source text line. The position numbers are 
needed by the Lister to indicate detected errors at the corresponding position In the 
program listing. Some symbols contain further Information. Symbols for constant 
numbers contain the number's value and the symbol representing an Identifier 
contains the corresponding spelling Index. 

Interspersed in the symbol sequence representing the syntactical structure of the 
compiled unit, additional symbols represent the line structure of the source text, the 
compiler options which may be specified In the source text, and the error messages 
which are generated by the compiler. The complete syntax of the symbol sequences 
on the inter-pass files is described In Appendix 4. 

6.3 Symbol Table Entries 

The symbol table of the Modula-2 compiler is a collection of symbolic infonmation 
about the objects declared in a compilation unit. It Is built up by Pass2 and stored in 
the heap of the memory as a large network of primarily two different types of entries. 
These are the name entry which describes named objects and the structure entry 
which describes type structures. References and links between these entries are 
established by pointers (ldptr is a pointer to a name entry; Stptr Is a pointer to a 
structure entry): 

Idptr 
Stptr 

POINTER TO Identrec; 
POINTER TO Structrec; 

( • name entry •) 
(• structure entry • ) 

Note: In the Modula-1 compiler the symbol table consisted, due to lack of pointer types, of several 
array-tables allocated in a common data space. The more flexible representation In the heap was 
introduced as soon as pointers and variant records were implemented by the new compiler. The 
redesign of the symbol tables, now as a networl< of pointer-referenced entries was also Influenced 
by the symbol table representation in the Pascal-6000 compiler [Amm75]. In fact, the symbol tabla 
is similar to that of the Pascal compiler. 

6 .3.1 The Name Entry 

Several classes of named objects are distinguished by the complier (e.g. 
constant- identifier, type-identifier). The enumeration type Ide/ass specifies the 
classes: 

Constant Type Variable 

name yellow name Color name light 
link t link t link t 
idtyp t idtyp t idtyp t 

globmodp t globmodp t globmodp t 

klass consts klass types klass vans 
cvalue 13 indacc. FALSE 

state global 

vkind noparam 

vlevel 2 
Instead of the spelling index, the actual vaddr 7 
Identifier is indicated in field "name". vi ink t 

This change is made In all followinQ pictures. 

In all boxes, the names of the fields are indicated at left. 
The values assigned to the fields are indicated at right. 

Flgu re 6.1 Name Entries 

CARDINAL Array Subrange 

size 2 size 17 size 2 
stldp t stidp t stidp NIL 
in list TRUE In list FALSE in list FALSE 
form cards form arrays form sub ranges 

elp t scalp t 

ixp t min 3 
dyn FALSE max 20 

Figure 6.2 Structure Entries 
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Procedure 

name Proc 
link t 

idtyp t 

globmodp t 

klass pures 
isstand. FALSE 

procnum 9 
locp t 

msp t 

plev 1 
varlength " priolev 16 
ext ace. FALSE 

codeproc FALSE 

locvarp t 

Enumeration 

size 1 
stldp t 

In list FALSE 

form enums 
fcstp t 

cstnr 8 



) 
50 

Ide lass 
(consts, types, vars, fields, pures, funcs, mods, unknown, indrct) 

A name entry is a record which consists of a part which is common to all object 
descriptions and a variant part which contains class-specific information (e.g. the 
value of a constant). It is defined by the type ldentrec: 

Identrec = 
RECORD 
· name: Spellix; 
1 1 ink: Idptr; 

CASE BOOLEAN OF 
FALSE: nxtfdp: Idptr; 

, I TRUE : f dtyp : Stptr; 
END (• CASE BOOLEAN •); 

- globmodp : Idptr; (• pointer to global module •) 
. CASE 1:1 ass: I del ass OF 

types: (• no further fields •) 
consts, unknown: (• unknown may convert to consts •) 

cvalue: Constval; 
vars: 

indaccess : BOOLEAN; (• indirect access to value •) 
state : Kfndvar; 
vkfnd : Varkfnd; 
vlevel : Levrange; 
vaddr CARDINAL; (• offset •) 
vlink : Idptr; (• variables or parameters •) 

fields: 
fldaddr: CARDINAL; 

pures, funcs, mods: 
CASE isstandard: BOOLEAN OF 

TRUE: 
CASE Idclass OF 

pures: pname: Stpures; 
I funcs: fname: Stfuncs; 
END (• CASE ldclass •) 

FALSE: 
procnum : CARDINAL; 
1 ocp Idptr; 
extp : l1 stptr; 
plev : levrange; 
varlength : CARDINAL; 
priolev : CARDINAL; 
externalaccess : BOOLEAN; 
CASE Idclass OF 

pures, funcs: 
CASE codeproc BOOLEAN OF 

FALSE: 

~name Mod 

link t 

klass mods 

locp t 1-
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MODULE Mod; 

VAR u, v, :CARDINAL; 

PROCEDURE Proc1; 

VAR w, x: CHAR; 

BEGIN 

ENDProc1; 

~ 
PROCEDURE Proc2; 

name u 
VARy, z: REAL; 

link t 
BEGIN 

klass 
ENOProc2; 

vara 
BEGIN 

END Mod. 

lname y 

link t 

klass vans 

lnsme Proc1 ~ name ~~ name X 

link t link link NIL 

klass purea klass vara klass vars 

locp t 

l name Proc2 ~ name :~ name z 
link NIL link link NIL 

klass pures klass vara klass vars 

locp t 

Figure 6.3 Tree of Name Entry Lists 



locvarp : Idptr; (• variables, no parameters •) 
TRUE: 

codelength : CARDINAL; 
codeentry : CARDINAL; 

END; (• CASE BOOLEAN •) 
mods: 

impp: Listptr; 
expp: Idptr; 
qualexp: BOOLEAN; 
CASE globalmodule : BOOLEAN OF 

FALSE: (• no further field •) 
TRUE: 

globvarp : Idptr; (• global variables •) 
modnum : CARDINAL; 
modulekey : Keyarr; 
identifier : Modnamarr; 

END; (• CASE BOOLEAN •) 
END; (• CASE Idclass •) 

END; (• CASE BOOLEAN •); 
1 indrct: (• no further fields •) 

END; (• CASE Idclass •) 
END (• RECORD•) 

Examples of name entries are given in Figure 6.1. 

The fields of the common part are name which is the spelling index of the 
represented object, link which points to the next name entry in a linked list, idtyp 
which refers to the type structure of the object, globmodp which refers to the name 
entry of the separate module in which the object Is declared, and klass which 
indicates the class of the object. Instead of idtyp, the field nxtidp Is alternatively 
used in some special cases (see section 7.4). In order to save memory space this 
two fields are overlaid In the name entry. 

The reference to the entry of the own separate module (field globmodp) is needed 
for the generation of the symbol file and for code generation. In both cases the 
compiler must know to which separate module an object belongs. 

The name entries are organized as a tree of linear lists, representing the nesting 
structure of the declarations in the compiled unit. Name entries for objects declared 
in the same block are linked In a linear list (field link), which Is ordered according to 
the spelling Index. Each linear list may be considered as the list of the local objects 
of a procedure or module. Its heading is the field locp of the corresponding 
procedure or module entry (for exported obJects see section 7.4). Figure 6.3 shows 
the organization of the name entries for a small module. 

Originally, the local objects were organized as a binary tree. The tree was replaced 
by the linear list when the compiler was extended for separate compilation. Two 
reasons forced this change. First, the limited memory space of the PDP-11 no longer 
allowed reserving two words for linking a tree. Second, the spelling Index became 
an Index to the Identifier table, and no longer to the hash table of the scanner In 
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I SETOF[3 .. 13] 

size 2 ~ size 2 ~ size 2 
stidp t stidp NIL stldp t 

in list FALSE in list FALSE In list TRUE 

form sets form sub ranges form carda 

basep t- scalp t'-

min 3 

max 13 

ARRAY ['a' .. 'z') OF [0 .• 170) 

size 20 ~ size 2 ~ size 2 
stidp t stldp NIL stidp t 

in list FALSE In list FALSE in list TRUE 

form arrays form aubranges form cards 

elp H- scalp H-
ixp H- min 0 
dyn FALSE max 170 

~ size 2 ~ size 2 
stidp NIL stidp t 

in list FALSE in list TRUE 

form sub ranges form chars 

scalp ti--

min 97 
max 122 

Remark: There is just one structure entry "cards" in the symbol table. 

Figure 6.4 Representation of Type Structures 
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Pass1. (This change was caused by the need to regain the character representation 
of the identifier from the spelling index for the generation of the symbol file and the 
reference file.} The Identifiers are sequentially entered Into the identifier table, 
according to their first occurence in the compiled text. This means that generally an 
identifier declared later gets a higher spelling Index, and therefore the binary tree 
would degenerate to a nearly linear list as well. Compilation with a linear list was 
marginally slower (about 3% for a large program} than compilation with the binary 
tree organization. So it was decided that It was not worth loosing one word in each 
name entry. A side effect of this change was that the searching procedures became 
simpler. 

6.3 .2 The Structure Entry 

Several forms of type structures are described by the structure entries. The different 
forms are specffied by the enumeration type Structform: 

Structform ~ 
(enums, bools, chars, ints, cards , words, subranges, reals , 
pointers, sets, proctypes, arrays, records, hides, opens} 

A structure entry is a record which also consists of a common part and of a variant 
part with form·specific information (e.g. base type and bound values of a subrange}. 
It is defined by the type Structrec: 

Structrec ~ 

RECORD 
size: CARDINAL; {• word size • ) 
stidp: Idptr; {• identifier defining this structure •} 
inlist: BOOLEAN; {• structure entered into a list •} 
CASE form : Structform OF 

bools, chars, ints, cards, words, reals: {• no field •) 
enums: 

fcstp: Idptr; 
cstnr: CARDINAL; 

subranges: 
scalp: Stptr; 
min: CARDINAL; 
max: CARDINAL; 

pointers: 
elemp: Stptr; 

sets: 
basep: Stptr; 

arrays: 
elp: Stptr; 
ixp: Stptr; 
dyn : BOOLEAN; 

records: 
CASE rpart : Recpart OF 

) 

~name 

idtyp 

klass 
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TYPE Color = (red, yellow, green}; 

Colo r 

tl---~ size 1 
stidp ,. 

types 

form enums 

fcstp ,. name red 

cstnr 2 link t!--

idtyp t 

klass consts 

cvalue 0 

l name yellow 

link t-

idtyp t 

klass consts 

cvalue 1 

l name green 

link NIL 

idtyp ,. 

klass consts 

cvalue 2 

Figure 6 .5 Enumeration Type 
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fixedpart: 
fieldp: Idptr; 
tagp: Stptr; 

tagfield: 
fstvarp: Stptr; 
elsevarp: Stptr; 
tagtyp: Stptr; 

variantpart: 
nxtvarp: Stptr; 
subtagp: Stptr; 
varval: CARDINAL; 

END (• CASE Recpart •) 
proctypes: 

fstparam : Idptr; (• pointer to parameter list •) 
CASE rkind: Idclass OF 

funcs : funcp : Stptr; (• pointer to function type •) 
1 pures : (• no further fields •) 
END; (• CASE Idclass •) 

hides, opens: (• conversion from hides to opens •) 
openstruc : Stptr; (• used for opens •) 

END (• CASE Structform •) 
END ( • RECORD •) 

Examples of structure entries are given in Figure 6.2. 

The fields of the common part are size which indicates the memory space needed 
for allocation of a variable of this type, stidp which refers to the name entry of the 
object which declared the structure (e.g. the type identifier), inlist which Is a flag for 
the compiler, and form which indicates the specific form of the structure. 

A structure entry is considered as a unique description of a type structure, and this 
Implies that the name entries of objects with the same data structure always refer to 
the same structure entry. If a type is explicitly declared with a type identifier, a 
back-reference from the structure entry to the type name entry Is established (field 
stidp). This pointer and the field inlist are used by the compiler for the generation of 
the symbol file and the reference file. 

The complexity of the structural representation of a type corresponds to the 
complexity of Its declaration. Almost all structure entry refer to further . type 
descriptions. Figure 6.4 shows examples for the representation of subranges, sets, 
and arrays. For an array, the index type is always entered as a subrange. 

In the structure entry of an enumeration type, field fcstp Is the heading of the name 
entry list of the corresponding enumeration constants. These values are entered 
into a separate name entry list and not Into the local list of the corresponding 
procedure or module. The separation is necessary because of the Import and export 
rules of Modula-2. If an enumeration type Is Imported (exported), all enumeration 
constants are Implicitly Imported (exported) as well (see Chapter 7). Figure 6.5 
shows the representation of an enumeration type. 

fixed part 

size 4 

form records 
rpart flxedpart 

fieldp t 

L.:t:::a9::,:P;__ ___ ...Jt l 

variant description 

~size 4 

form records 

rpart tagfleld 

fstvarp t 

elsevarp NIL 

tagtyp t 

l size 3 ~ 

form records 

size 4 

form records 

rpart varlantp. rpart varlantp. 

mctvarp t mctvarp 
subtagp NIL subtagp 

varval 0 varvai 

variant values: 0 =>FALSE 

1 =>TRUE 

NIL 
NIL 
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RECORD 

key: CARDINAL; 

CASE account : BOOLEAN OF 

FALSE : marl<: CHAR; 

I TRUE : value : REAL; 
END; 

END; 

name key 

link t 

idtyp t ~ size 

kiass fields form cards 
fldaddr 0 

l name account 
link t 

idtyp t -~ size 

klass fields form boola 
fidaddr 1 

lname mark 

link t 

idtyp t ~ size 

klass fields form chars 
lldaddr 2 

lname value 
link NIL 
idtyp t~ size 2 

klass fields form reals 
fldaddr 2 

Figure 8.6 Record Type 
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A record type is, in general, a very complex structure. Each record field may have its 
own type, and it is possible to overlay f ields within variant sections. A structure entry 
of a record type primarily consists of a so-called fixed part with f ield fieldp as a 
pointer to the name list of all fields declared in the record, and with field tagp as a 
pointer to the description of the variants. According to the language definition~ 
does not support access control on variant sections, the compiler does_not_clleck, 
~in variant sections are accessed lega~e. consistent_ 
~~alue. Therefore, the description oflhE!Varial'lt structure in the 
symbol table serves as size information only. It is separated from the representation 
of the field list and is only generated for a variant section at the end of the record 
declaration. Figure 6.6 shows the representation of a record type. 

Modula-2 allows the declaration of procedure types. Therefore, a structure entry for 
procedures is needed. The structural information consists of the parameter list, 
assigned to f ield fstparam, and, for function procedures, the result type. The 
parameter list links the parameters (variable entries} via field vlink. Each (constant} 
procedure Is considered as specifying its own type structure (the handling of 
compatibility with procedure variables is explained in 8.6.2}. Figure 6.7 shows the 
representation of a procedure. 

6.4 Pointers to the Symbol Table 

In module MCBase, several pointer variables are declared which hold the roots of 
the symbol table. They provide direct access to important name entries: 

root 
sysmodp 
mainmodp 

Idptr; 
Idptr; 
Idptr; 

The variable root represents the root of the whole symbol table. The f irst entry 
marks the so-called standard module. Its export list contains the objects which are 
declared standard in Modula-2. The local list of the standard module links the 
separate modules which are involved in the current compilation. These are the 
module SYSTEM, the compiled unit, and all imported separate modules. 

The pointer sysmodp provides a direct reference to the name entry of the module 
SYSTEM. The pointer mainmodp does the same for the compilation unit. Both 
pointers are used by the compiler very frequently. 

Furthermore, the compiler must explicitly know the pointers to the structure entries 
of the standard types. For example, they are used in Pass1 for the assignment of a 
type to constants, and in Pass3 for the implementation of the type compatibility tests. 
These pointers are declared in module MCBase as follows: 

boolptr 
charptr 
intptr 
cardptr 
intcarptr 

Stptr; 
Stptr; 
Stptr; 
Stptr; 
Stptr; 
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PROCEDURE Proc (nLJm: REAL; VAR ole BOOLEAN); 
CONST zero = '0'; 

VARix: CARDINAL; 

~ name Proc 
BEGIN 

.... 

idtyp t 

ll-hu 
END Proc; 

klass pLJres 

isstand. FALSE 1 
stidp t 

locp t 

fonn proctypes 

varlength 8 fstparam t 

rklnd pures 

codeproc FALSE 

locvarp t 

l name num Lr~ name ok ~ name zero w-4 name lx 

link t link t link t link NIL 

idtyp t idtyp t idtyp t idtyp t 

klass vars klass vars klass consts klass vars 
indacc. FALSE inda= TRUE cvalue 48 indacc. FALSE 

state local state local local 
vkind valparam vkind varparam vkind noparam 

vaddr 4 vaddr 6 vaddr 7 
vlink t vi ink NIL vi ink NIL 

l size 2 l size 1 l size 1 l size 1 

fonn reals fonn boola fonn chara form carda 

Remark: The procedure mark entry needs four words on the stack. 

Therefore, the first parameter is alloccated with offset 4. 

Figure 6.7 Procedure Declaration 
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realptr 
procptr 
bitsetptr 

Stptr; 
Stptr; 
Stptr; 

Figure 6.8 gives an illustration of the overall organization of the symbol table. 

... 
~·, 

I root 

lsysmodp 

lmeinmodp 

lboolptr 

lcharptr 

lrealptr 
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MODULE Prog; 
IMPORT libra; 
. ... 

ENDProg. 

~ name S.M. 

klass mods name SYSTEM u link t 

locp t idtyp NIL 

expp tf-- klass mods 
quelexp FALSE 
globalm. FALSE qualexp TRUE 

globalm. FALSE 
t 

I 
t name Prog 

link t 

idtyp NIL 

t~ size ~Lr4 name BOOLEAN 

stldp link t '--- klass mod a 
ldtyp t 

form boola qualexp TRUE 
klass types globalm. TRUE 

identffier Prog 

t~ size 1u-4 name CHAR -- --
stidp t link t f.-

idtyp t name Libra 
form chars link 

Nl~~ klass type a ldtyp 

~-
--

klass mods I 

t~~ size 2 ame REAL I 
stidp t hnk :hl qualexp TRUE 

idtyp globalm. TRUE 
form real a 

klass types I identffler Libra 
I 

Figure 6.8 Pointers to the Symbol Table 
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7 Scope Handling 

7.1 Scope Rules 

The scope rules of Modula-2 specify In which parts of a program a declared object is 
known and accessible. Procedures and modules are considered to constitute a 
so-called scope. So a compilation unit defines a system of scopes which are nested 
in the same manner as procedures and modules. In addition, a new scope is also 
established by record declarations (for the declared fields) and by with-statements. 

For a better understanding of the structures built up In the compiler for scope 
handling, the scope rules are listed here: 

1) Generally, an object is known in the scope where it is declared. The identifier of 
the object must be unique within the set of objects in this scope. 

2) If an object is used in a declaration, then it must be declared itself prior to its use. 
This rule is relaxed for a type referenced in a pointer declaration; it may be declared 
later in the same scope. This rule does not apply to objects referenced In 
statements. 

3) For a scope established by a procedure or a with-statement, an object known 
outside the scope is also known inside, unless a new object with the same identifier 
Is specified within this scope. 

4) For a scope established by a module, an object defined outside is also known · 
inside if it is imported. An object specified Inside the scope Is also known outside if it 
Is exported unqualified. The objects defined as standard objects of Modula-2 are 
always implicitly known within the scope of a module (pervasive objects). 

5) Qualified exported objects are accessible outside the module only if prefixed by 
the module's name. If the objects are explicitly Imported by another module (import 
with FROM), they are directly known by their name within this module. 

6) The fields of a record are accessible only in field designators or directly in with 
statements which refer to a variable of this record type. 

7.2 Scope Display 

Pass2 and Pass3 check that the scope rules are respected by the compiled unit. 
Both passes use an identical control structure to handle the scopes, the so-called 
scope display. This Is organized as a stack, representing the current nesting of the 
scopes. On each level of the display several lists are appended, which provide 
access to the objects specified In the corresponding scope. In Pass2 the display Is 
also used to enter the new declared obJects into the name entry lists of the top 
scope. 

Name searching procedures use the scope display. To find an object with a given 
identifier (spelling index), the searching procedures must scan through all lists from 
the top scope down to the next scope of a module until an object with the specified 
name is found. 

display 

localp t~ name 
link 

localp t~ name 

link 

localp t~ name 
link 

localp t~ name 

link 

Entry of local objects on each level 

Proc1 

NIL 

x1 Lr t 

x2 lr t 

x3 ~ t 

PROCEDURE PToc1; 

name 
link 

name 
link 

name 

link 

VAR x1, y1: REAL; 

PROCEDURE Proc2; 

VAR x2, y2: REAL; 
PROCEDURE PToc3; 

VAR x3, y3 : REAL; 

y1 ~ name 
t link 

y2 lr name 
t link 

y3 

NIL 

Flgu re 7.1 Local List 

63 

Proc2 

NIL 

Proc3 

NIL 
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In Pass2. the display is declared as an array of records: 

display : ARRAY Scoperange OF 
RECORD 

localp : Idptr; 
extendp Listptr; 
exportp : Idptr; 
modulep : Idptr; 
forwardp : Forwardptr; 

END; 

In each display entry, field localp holds the locally declared objects and field extendp 
the objects with extended validity range (e.g. exported by an inner scope). The fields 
exportp and modufep are only used for the scopes of modules and refer to the 
export list and the module itself (e.g. to provide access to the import list of the 
module). The field forwardp holds the list of pointer types whose referenced type are 
declared later. 

The display grows and shrinks according to the depth of nesting. At the end of a 
procedure or module, Pass2 assigns the lists of the top scope to the corresponding 
fields of the procedure or module name entry in the symbol table (focafp to focp, 
extendp to extp, and exportp to expp). Saved In this way, the display can easily be 
reconfigured in Pass3. 

A detailed description of the different lists is given in the next sections. It refers to 
the organization and handling of these lists in Pass2. 

7.3 Local List 

The focal list links name entries (via field fink) and is appended to the display entry 
field loca/p. For procedures, it contains the objects declared local to the procedure. 
For modules, it includes only those objects which are not exported. The local list is 
ordered according to the spelling index of the objects (see 6.3.1). Therefore, a new 
object is inserted at the corresponding position in the list. 

Examples of local lists are given in Figure 7.1. 

7.4 Export List 

The export list links name entries (via field /ink) and Is appended to the display field 
exportp. It contains the exported objects of a module. This list Is used for modules 
only. 

When a module is compiled, Pass2 reads, before a new scope Is established, the 
names of the exported objects and generates a provisional list of name entries. In 
the case of unqualified export, it checks at the same time that the exported names 
are unique in the environment of the module, i.e. not already known in the current 
scope. 

ln·this provisional version of the export list, all name entries have the field klass set to 
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the value unknown (only the name, but not the object is known) and a 
back-reference to the preceding entry is assigned to field nxtidp. This field is 
overlaid on the field idtyp, which is not used for name entries of unknown class. The 
list is assigned to field expp of the module entry. For an example see Fagure 7.2. 

After the provisional export list has been generated, a new scope of the module is 
establ ished and the provisional export list is assigned to the display entry field 
exportp. If the declaration of an exported object is processed, the new symbol table 
entry is not linked into the local list of the current scope. Instead, the provisional 
unknown entry in the export list is replaced by the new definitive entry. Field nxtidp 
is used to update the field link of the preceding list element. The exchange is 
illustrated by Figure 7.3. 

At the end of processing the module, Pass2 scans the actual export list and checks 
whether or not all name entries are definitive; i.e. all exported obJects have been 
declared. 

7.5 Import List 

The import list is a chain of pointers to name entries, representing the imported 
objects of a module. it is generated when the import clauses of the module are 
processed and contains: 

• The objects explicitly specified in the import clauses. 

• The nested local modules which are exported unqualified by imported local 
modules, to provide access to the list of their unqualified exported objects. 

• The enumeration types which are exported unqualified by imported local 
modules, to provide access to the list of the corresponding enumeration constants. 

· The "standard module" exporting the standard objects, which are implicitly 
known within all modules and therefore are called pervaslves. 

Modules and enumeration types nested within an imported module are entered 
separately. This allows the implementation of a simpler algorithm for searching an 
object in the import list, i.e. only linear lists must be scanned and not also nested 
structures. 

The names of the imported objects must not be ambiguous. This Is checked when a 
new object is entered Into the import list. The import rules of Modula-2 say that with 
a module its unqualified exported obJects are also imported, and that with an 
enumeration type its enumeration constants are imported too. The unambiguity of 
all these names Is checked as well. 

Pass2 enters only those objects into the Import list which previously have been 
declared and therefore may be used for declarations (scope rule 2). The remaining 
object names are directly passed to Pass3, which updates the Import list (scope rule 
1) and checks that all imported objects have been declared. 

The generated import list is assigned to the field impp of the module entry. When the 
scope of the module is entered into the scope display, then the import list is not 
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MODULE Mod; 

EXPORT p, v, z; 

Provisional version of the eKport list TYPE t = (t1 , t2, 13); 

after processing the export specification VARv:t; 

by Pass2. 
. ... 

END Mod; 

Module entry 

~name Mod 

klass mods 

expp t 

Provisional export list 

'--+ name ~LJ+ name ;r name z 
link link link NIL 

nxtidp t nxtidp t nxtidp f 

globmodp t globmodp t globmodp t 

klass unknown klass unknown klass unknown 

Field • nxtidp • is overlaid on field • idtyp • 

Flgu re 7.2 Export List 

Situation in display and export list 

after processing the first declaration 

of an exported object. 

display 

MODULE Mod; 

EXPORT p, v, z; 

TYPE t = (t1, t2, 13); 

VARv:t; 

END Mod; 

67 

1-"loca=l"'-p ___ t-;f---+ - ---+1-'n=am:c=.e __ ....:.cMc:.o_,d 

klass moda 

expp t 

localp t -----)oj.:n.:.:a:::m:.::e::_ ___ ,.::t-i 
F=::._----'-1 link NIL 

!-"'-''-'------; 
exportp t-

~name r-------, ~ 
P ; - ~>jnarne v1 :--,... .. n_accrne--'------;z 
t - ' ' I link tt - 1-'l_in"-k'--____ N_IL-i : link 

: nxtidp t : lnxtidp tl-, nxtidp t - , 
' I I, , 
: I _j : ~---------1 ' 
' lklass unknown I , klass unknown : 
: ! ~ : I 

klass unknown 

I L----- - -.J I ....... _____ __,: 

~-------------- -~- -- ::: - - ::: -::~ -------- ----I 

The provisional entry of class "unknown· 

is replaced by a definit ive entry of 

appropriate class. 

l name v 

~l~in:.::k'-----'-;----
idtyp t 

klass vara 

Figure 7.3 Export List 
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directly assigned to a display entry field. Instead, the pointer to the module entry is 
assigned to the field modulep, and searching of an object in the Import list is started 
via this detour. The module reference in the scope display entry is also needed for 
further purposes. 

For an example see Figure 7.4. 

7.6 Extend List 

The extend list is a chain of pointers to name entry lists. It represents those objects 
in a scope, which are declared or specified here, but not accessible via local list, 
export list, or import list. These objects are considered to have an extended validity 
range (scope). 

Two kinds of name entry lists are referenced by the extend list: Enumeration 
constant lists of enumeration types and export lists of modules which are declared 
within the scope. At the insertion of a new name list, it is always checked that the 
new names do not conflict with the names already known in the extend list. 

The import/export rules of Modula-2 say that with an enumeration type, the 
corresponding enumeration constants are also imported/exported. For this and for 
other implementation reasons, these constants are not directly inserted into the local 
list. Instead, a separate name entry list Is generated and appended to the structure 
entry of the enumeration type. The extend list makes the enumeration constant lists 
accessible within the scope. 

Scope rule 4 says that objects exported unqualified from a module are also known in 
the scope around the module. After compilation of a module, its entry in the scope 
display is released. But access to its export list is still necessary. For this purpose 
the export list is entered Into the extend list of the next lower scope display entry. 
Here again, it is necessary to enter separately the enumeratron constant lists and the 
export lists which are implicitly contained in an export list. 

For an example see Figure 7.5. 

7.7 Forward List 

The forward list contains the type identifiers referenced in pointer declarations, 
which are not already known in the current scope. This list is used in Pass2 only. 

Scope rule 2 allows a pointer-referenced type to be declared after the pointer 
declaration in the same scope. To respect the scope rules in this case, Pass2 first 
searches the type identifier in the current scope. If It is not known yet, the pointer 
structure entry is left incomplete. Instead, the spelling index and the pointer to the 
structure entry are Inserted Into the forward list. At the end of processing the 
corresponding procedure or module, the forward list Is scanned. All missing types 
are searched (now through all possible scope levels) and the corresponding pointer 
structure entries are completed. 

Module Entry 
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PROCEDURE Proc; 

TYPE e = (e1, e2, e3); 

MODULE Mod; 

EXPORT m1, m2; 
.... 

END Mod; 
display ENDProc; 

localp t~ name Proc 

link t 

localp t~ name :Lr name Mod 

extendp t link link NIL 

idtyp t 

klass mods 

u~ 
name m1 

klass types link t~ expp t 

~name m2 

link NIL 
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next tl-
L-) size 1 ~ name e1 

link t~ form enuma 

fcstp t 

~element 
~ name e2 

link t~ t 

next NIL 
~ name e3 

link NIL 

Figure 7.5 Extend list 
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8 Structure and Function of the Various Compiler Parts 
This chapter describes the implementation of the various complier parts. It shows 
their decomposition into separate modules and the concepts and functions 
implemented by these modules. 

8.1 Interface to the Environment 

One goal of the implementat ion of the Modula-2 compiler has been to keep the 
dependence on its environment as small as possible. This means that the compiler 
modules generally should not import objects from separate modules which do not 
belong to the compiler. Especially references to the operating system (e.g. 
input/output procedures) should not be spread over the whole complier, because 
each operating system has its own interface and behavior, and an adaptation to 
another operating system could cause many modifications of the complier source. 

Therefore, two modules which constitute an Independent Interface between 
operating system and compiler have been developed. These are the module 
CompFile for the handling of compiler f iles, and the module WriteStrings for writing 
on the terminal. A third module, Conversions, has been developed for the 
conversion of integer values to character strings. 

Only one module which might be considered as part of the operating system is 
referenced all over the various compiler parts. It is the module Storage which 
administrates the heap of ihe memory. It exports the procedures ALLOCATE and 
DEALLOCATE which are needed for substitution of the standard procedures NEW 
and DISPOSE. 

Generally, only these modules outside the compiler are Imported by the compiler 
modules. Exceptions are three special compiler modules (MCPublic, MCinit, and 
MCLookup) which also import other modules from outside the compiler. The 
advantage of this interface restriction became evident when the compiler was 
transported from the PDP-11 to Lilith. The transfer was easily accomplished within a 
few days. Only the interface modules and the special compiler modules were to be 
adapted to the new environment. 

The compiler base cannot be completely independent of the environment because 
of the calling mechanism that is prescribed by the loader. Another dependency is 
caused by the file names which may differ among various systems. 

8.2 Compiler Base Modula 

The compiler part Modula Is the base part of the complier. Its main purpose is to 
control the execution of the other compiler parts and to establish a global base for 
type and data definitions which are valid for all compiler parts. The base part 
consists of the separate modules: 

MCBase 

MCPublic 

Main module and private part, with data descriptions and 
variables used by all compiler parts. 
Public part, with execution control. 
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The import-references are illustrated In Figure 8.1. 

The reason for splitting the compiler base Into two separate modules was to 
separate those parts which are Independent of the underlying operating system from 
those which handle the system-dependent activities. The module MCBase Is mainly 
used for defining the global constants, types, and variables which describe the 
symbol table of the compiler. Its implementation module is empty. Module MCPublic 
has to call the other compiler parts according to the kind of the compiled unit and 
the current state of the compilation process (e.g. call of the Lister after Pass3 If an 
error has been detected). For this purpose, module MCPublic exports a state 
variable to which the called compiler parts may assign values. The type of the 
variable is a set of possible status values such as the kind of the compiled unit, 
whether or not errors have been detected in a pass, the validity of program options, 
and soon. 

8.3 Initialization 

The Initialization part Is a pre-pass. It handles the dialog with the user in order to 
open the source text file and to accept the program options (parameters for the 
compilation). It further creates the output files, determines a new module key (time 
stamp), and initializes the execution state. This part consists of the modules: 

MC/nit 
MCLookup 

Main module, with control of the interactive dialog. 
Lookup on input files. 

The import-references are illustrated in Figure 8.2. 

The separation of the initialization part from the compiler base has been forced by 
the need to save space in the memory of the computer (crucial on the PDP-11 with 
28 kword memory space). It is also reasonable that the code for the compiler 
initialization should not remain in memory during the whole compilation process. 

8.4 Pass1 

Pass1 provides the lexical and syntactic analysis of the source text. It is split Into the 
separate modules: 

MCP1Main 
MCP110 
MCP1/denf 
MCP1Reals 
MCLookup 
MCSymDefs 

Main module, with the syntax parser. 
Input/ output handler and source text scanner. 
Module to enter the standard obJects Into the symbol table. 
Module for the compilation of constant real numbers. 
Lookup on Input files. 
Symbol definitions for symbol files. 

The import-references are illustrated in F~gure 8.3. 

8.4. 1 Main Functions 

The first activity of Pass1 Is the initialization of the klentifier table and the symbol 
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table. Procedures of module MCP11dent enter the key-words of the Modula-2 syntax 
into the identifier table (key-words are considered as special identifiers} and enter 
the standard declared objects of Modula·2 and the objects of module SYSTEM into 
the symbol table. 

Afterwards, Pass1 starts to process the compilation unit. The scanner in module 
MCP110 reads the source text and transforms it Into a symbolic representation 
based on the global compiler type Symbol (see section 6.2}. The scanner also 
evaluates the constant numbers (see below) and enters the identifiers into the 
identifier table and determines their spelling index. 

The parser in module MCP1 Main checks the generated symbol sequence for 
correctness of syntax and, in case of mistakes, generates error messages and 
synchronizes the symbol sequence with the requested syntax. The symbol 
sequence proceeded to the subsequent passes must merely respect the syntax 
defined for the inter-pass languages (see Appendix 4}. Its correctness is assumed 
by these passes, in order to not waste time for syntax checking. Redundant symbols 
(e.g. semicolons) are eliminated and the remaining symbols are written on the 
inter-pass file IL 1. In some special cases the sequence of the symbols is changed in 
order to allow the subsequent passes unambiguous parsing, Independent of any 
contextual Information. An ambiguity occurs, for example, for the statements 
assignment and procedure~s/1 which both start with a designator. Pass1 reverses 
the symbol sequence of an assignment by putting the assignment symbol in front of 
the designator. For procedure calls, It inserts a call symbol In front of a procedure 
designator. 

8.4.2 Reading Symbol Files 

When an implementation module is compiled, and when separate modules are 
imported by a compilation unit, Pass1 searches for the corresponding symbol files. 
The lookup on these files is handled in module MCLookup. The name of a symbol 
file Is derived from the module's name according to a default strategy. It is also 
possible to explicitly specify the file name in an interactive dialog. 

The symbols on the symbol files which are encoded according to a type declared in 
module MCSymDefs are transformed by Pass1 into compiler Internal symbols. It 
also replaces the identifiers by new assigned spelling indices. Afterwards, it writes 
the information at the beginning of the inter-pass file. The inter-pass file therefore 
consists of a sequence of symbol modules which are supplied on the symbol files 
(see section 4.2), followed by the symbolic representation of the actually compiled 
unit. See also Figure 8.4. 

8.4.3 Constant Values 

Numbers, characters, and character strings are recognized by the scanner, which 
checks them for correct syntax and computes their values. 

Integer numbers are slmulatneously computed for all possible number bases (octal, 
decimal, hexadecimal} as long as the "digits" are in the allowed range and the 
computed number would not exceed the value range. 
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Real numbers are computed by procedures exported by the separate module 
MCP1 Reals to which the scanner passes the characters. The separation of this 
module is very useful. II concentrates all conversion operations in one place, and 
the internal representation of the real numbers can easily be adapted to the required 
hardware format. In the view of portability It Is essential that this module does not 
use constants of type REAL for its own Implementation. 

Apart from evaluating a constant specified in the source text, the scanner also must 
assign a data type to it. This is easily possible for characters, strings, and real 
numbers. A problem arises in the case of integer numbers, because of the 
overlapping value ranges of the types INTEGER and CARDINAL The compiler 
distinguishes three intervals: 

ints 
intcards 
cards 

: minint .. ·1 
: 0 .. maxint 
: maxint + 1 .. max card 

A constant integer number within the intcard range is compatible with objects of 
either type INTEGER or CARDINAL 

The compiler's internal representation of constant values respects the fact that 
constants must be written on the inter-pass file. This is simple for values 
represented in one memory word (e.g. integers), but the dynamic length of string 
values is very inconvenient. The solution is that string values are stored in the heap 

~ and only a pointer to this entry is passed on the inter-pass file. The same solution 
has been chosen for real numbers in view of a possible implementation of 
extended-precision real arithmetic. The following data structure is used by the 
compiler: 

Constval 
RECORD 

CASE Structform OF 

-tl~ . :s ~ ~ Julf- w{ .flt_ r[91t__ 
?O•t...J-rt'~.S. ~ ~ ~ fJu...A 

1 {:;.-1-:J~t u:J/LDmiiU..· arrays : svalue : Stringpointer 
1 reals : rvalue : Realpointer 
ELSE value : CARDINAL 
END 

END 
. , or -rk \(1'l"'-\_~ 

/S I V 

8.5 Pass2 - p ;1-->l~s . 
Pass2 processes and analyzes all declaration parts of the compiled unit. It is split 
into the separate modules: 

MCP2Main 
MCP210 
MCP2Ident 
MCP2Reference 
MCOperations 

Main module, with the parser of the declarations. 
Input/output handler and scanner of the Inter-pass file. 
Identifier and scope handler. 
Reference file generator. 
Module for the evaluation of constant expressions. 
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The import-references are illustrated in Figure 8.5. 

8.5 .1 Main Functions 

The inter-pass file IL 1 is read by the scanner (in MCP210), which passes the symbols 
to module MCP2Main. This main module is a parser for the declaration parts and it 
transforms the declarations into a structured representation In the symbol table. The 
statement parts are skipped and copied on the second Inter-pass file ll2. The 
correct use of the scope rules Is verified by procedures exported from the separate 
module MCP21dent. 

A duty of Pass2 is the organization of the Initialization of local modules. According 
to the language definition of Modula-2, the module bodies (statement parts) must be 
executed as soon as the procedure to which the module Is local becomes active. 
This implies an implicit call of the module body. Pass2 Inserts this call at the 
beginning of the surrounding statement part. 

The following list gives an overview of the various activities of Pass2. More details 
about some of these activities are given afterwards: 

• Entering the declared objects into the symbol table. 
· Testing of scope rules (see Chapter 7). 
· Support of initialization of the module bodies. 
· Evaluation of offset addresses for variables and record fields (see 8.5.2). 
• Assignment of procedure numbers. 
· Generation of the reference file (see 8.5.3). 
· Evaluation of constant expressions (see 8.6.3). 
· Check for complete declaration of exported objects and forward referenced types. 
· Check for redeclaration of procedures and opaque exported types in 

implementation modules. 

8.5.2 Size Evaluation and Address Assignment 

An important duty of Pass2 is the evaluation of data sizes and the assignment of 
offset addresses to variables and record fields. 

On Lilith, the smallest accessible data unit is one memory word (16 bit). Therefore, 
the elements of most types are represented in one memory word. These types are: 

· Standard types: INTEGER, CARDINAL, BOOLEAN, CHAR 
• Enumerations 
. Subranges 
·Sets 
• Pointers 
• Procedure types 
• System types: WORD, ADDRESS, PROCESS 

For elements of type REAL, two memory words are needed. 

\ For record types, the needed space Is the sum of the space needed for the fields. 
E_he fields in a record are allocated consecutively according to the order of 

p~,J X~ :;;;;;.-4oo-!,w,_ ~ 
J"(; 't ~ ~ p 
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VAR a: CARDINAL; 

b:BOOLEAN; 

c: ARRAY [ 1 .. 3) OF CARDINAL; 

d: REAL; 

e:RECORD 

e1 : BOOLEAN; 

e2: (red, green, b lue); 

END; 
f: ARRAY (O .. 7} OF CHAR; 

For 81T11ys and records just one word tor 
their address is allocated by the compiler. 

The actual stOillge for the variables 

Is allocated at run time. 

Figure 8.6 Data Allocation 
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declaration and get an offset relative to the beginning of the record. Fields declared 
In variant parts are overlaid. 

For array types (except for character arrays) the needed space Is the product of the 
number of elements and the element size. In character arrays (strings) two 
characters are packed into one word. 

For addressing variables, the M·code Instructions provide addressing relative to a 
base address. For global variables this Is the address of the data frame of the 
separate module, for local variables It Is the address of the procedure mark stack 
entry of the corresponding procedure. A characteristic of M·code is that the 
instructions for loading and storing Information allow an offset in the range from 0 to 
255 (by one byte). The consequence of this fact is that large elements should not lie 
within the offset range and therefore reduce the number of variables possible. 
Therefore, arrays and records are generally addressed indirectly. Their actual 
address is held by a word allocated in the offset range. The space actually needed is 
allocated after all one (or two) word entries have been detennlned. These addresses 
are computed at run time. See Figure 8.6. 

Parameters are treated as local variables, whereby, for variable parameters, a single 
word Is needed for the address entry. For dynamic arrays a two-word entry is 
generated with the second word holding the upper Index bound. 

• Size evaluation and offset assignment cause Pass2 to be machine dependent. One 
reason for doing it at this point is the separate compilation facility. It Is desirable that 
the addresses of the variables exported from a separate module be assigned during 
compilation of the definition module. Then all modules importing a separate variable 
can work with fixed values and no offset insertions are necessary at execution t ime. 
Another reason is that the compiler should not have to scan all declarations twice to 
complete their representation In the symbol table. 

8.5.3 Reference File Generation 

If the execution of a program fails, it Is useful to analyze the program's actual state. 
This is done by a post-mortem debugger. For the debugger, the complier provides 
some information about addresses of variables, procedure entries, and names and 
structures of the different objects. The needed information is complied in Pass2. 
For each declaration of a module, procedure, variable, or type, a prOCedure of the 
separate module MCP2Reference Is called. This procedure ex1racts the appropriate 
piece of information from the symbol !able and writes it on the reference file. 

Reference files are generated upon compilation of an implementation module or a 
module without export and describe exactly this module, I.e. all objects declared in 
the module. This rule is broken for type descriptions only. Types declared in other 
separate modules are contained in the reference file, if they are used In the 
declaration of an object. This Is reasonable because for data structures which are 
accessible in a module, it should be possible to inspect their values during a 
debugging session. 

The separation of the module MCP2Reference from the main module has been very 
useful. The compiler is largely independent of the debugger. Since the Introduction 
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of the reference file, the debugger has been developed to provide more detailed 
information about the program's actual state. This caused at least twice an 
improvement of the reference file format. It has been possible to make all the 
necessary changes in module MCP2Reference, without any adaptation of the 
interface or replacement of procedure calls in other compiler modules. The syntax 
of the information on the reference file is listed In Appendix 5. 

8.5.4 Integration of Symbol Modules 

The symbol modules which represent the imported separate modules are processed 
by Pass2 and transformed into symbol table entries. Full type information about the 
imported objects is therefore available in the symbol table, and the compiler applies 
the same type and parameter tests to them as to objects declared in the compiled 
unit itself. The advantage of choosing a format on the symbol files similar to the 
inter-pass language is that no special procedures are needed to process the symbol 

l 
modules. Slight differences, such as already assigned variable offset addresses or 
procedure numbers, cause a few extensions to the parsing procedures for the 
compiled unit in module MCP2Main. 

As several symbol files are merged by Pass1, it is possible that parts of the same 
separate module are represented by more than one symbol module on the inter-pass 
file. Matching module keys guarantee that the symbol modules are derived from the 
same compilation of the corresponding definition module. Each of these symbol 
modules possibly specifies another subset of the Interface. Therefore some objects 
could be declared more than once. To tackle this situation, Pass2 tries to 
complement the existing representation of the separate module, and to skip the 
objects already entered into the symbol table. 

8.5.5 Matching Definition and Implementation Module 

A definition module and its corresponding implementation module represent 
complementary parts of the same separate module. Objects declared in the 
definition module are implicitly available in the implementation module. For 
procedures and opaque exported types, the implementation module even has to 
provide a new, complete declaration. Upon compilation of the Implementation 
module, Pass2 checks whether or not the two modules are matching. 

The symbol module representing the definition module precedes the Implementation 
module on the inter-pass file between Pass1 and Pass2. This symbol module is 
therefore already entered into the symbol table, when the implementation module is 
processed. Before processing the latter, Pass2 scans the export list and the local list 
of the current representation of the module In the symbol table and determines the 

-Jalready assigned variable addresses and procedure numbers. The entries of the 
procedures and the opaque exported types, which must be redeclared In the 
implementation module, are removed from the export or local list and entered into a 
separate list, the so-called old list. 

This old list Is scanned, when a procedure or a type Is declared in the 
Implementation module and a redeclaration of such an object is possible (see 

) 
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below). If an object is found in the old list, it is checked for equivalence with the new 
declared object. Afterwards, the old entry is removed from the old list and the 
symbol table. An empty old list at the end of the compilation indicates successful 
redeclaration of all procedures and opaque types of the definition module. 

Redeclaration of an object of the definition module is possible, if the new declared 
object is globally known, i.e. known at the global level of the implementation module. 
This means that the object either must be declared directly at the global level, or 
declared within a local, possibly nested, module and exported unqualified to the 
global level. Procedure GlobaiKnown in module MCP21dent provides this test. 
Starting from the current scope level down to the global scope level, it checks all 
export lists for the object's name. According to the export rules, that an object may 
be exported implicitly with a module name, It also checks for the corresponding 
module names. Redecfaration is possible, if one of these names is known at the 
global level. 

Example 8.1 

In the following module the name Nested is known at the global level. For a 
complete test, the names Nested and Mod2 must be checked. 

IMPLEMENTATION MODULE Nest; 

MODULE Mod1; 
EXPORT Mod2; 

MODULE Mod2; 
EXPORT Nested; 

PROCEDURE Nested(level: CARDINAL); 
BEGIN ..... 
END Nested; 

END Mod2; 

END Mod1; 

END Nest. 

8.6 Pass3 

Pass3 processes and analyzes the statement parts of the compiled unit. It Is split 
into the separate modules: 

MCP3Main 
MCP310 
MCP31dent 
MCOperations 

Main module, with the parser of the statements. 
Input/output handler and scanner of the inter-pass file. 
Identifier and scope handler. 
Module for the evaluation of constant expressions. 
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The import·references are illustrated in Figure 8.7. 

8.6.1 Main Functions 

The information on the inter·pass file ll2 is read by the scanner In module MCP310. 
The main module MCP3Main parses the statement parts. It checks on the correct 
use of the statements and the type compatibility of obJects In expressions, 

) 

assignments, and procedure calls. For all identifiers (spelling indices), the compiler 

\\

tries to find an entry of an appropriate object in the symbol table, and replaces the 
index by the pointer to this entry. 

--= 
The following list gives an overview of the various activities of Pass3. More details 
about some of these activities are given afterwards: 

· Test of type compatibility (see 8.6.2). 
· Evaluation of constants In expressions (see 8.6.3). 
· Allocation of data space needed in WITH statements . 
. Substitution of the standard procedures NEW and DISPOSE by user defined 

procedures. 
· Linking of string constants. 
· Completion of import list 

8.6.2 Type Compatibility Tests 

Modula·2 defines type compatibility rigorously. Generally, objects are (type) 
compatible, if they refer to the same declaration. For subranges the base types must 
be compatible. Objects with merely an equivalent data structure are considered 

incompatible. 

Example 8.2 

In the following declaration the variables a and bare incompatible: 

VAR a ARRAY [1 10] OF CARDINAL; 
VAR b :ARRAY [1 . . 10] OF CARDINAL; 

This rule allows a simple and fast implementation of type compatibility testing in 
Pass3. Objects are recognized to be compatible if they (or their base types) refer to 
the same structure entry. The first, general test therefore compares the pointers to 

the structure entries. 

Unfortunately, compatibility rules for constants and procedures are more complex 
and in some cases it is even necessary to check on structural equivalence. 

Compatibility rules for constants and procedures: 

· "intcard" numbers are compatible with objects of either type INTEGER or 
CARDINAL 

· NIL is compatible with all pointer types. 



. String constants are compatible with character arrays which are at least as 
long as the string constant. 

. Procedures are compatible with procedure variables with the same structure, 
i.e. the same parameter sequence, including the parameter kind (value or 
variable parameter), and, for function procedures, with the same result type. 
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The above rules determine the basic set of compatibility tests which are always 
performed. In the compiler this set is known as expression compatibiHty. 
Relaxations of the compatibility rules are allowed in some places. 

Relaxations of the compatibility rules: 

• In assignments, objects of the types CARDINAL and INTEGER are said to 
be compatible. The assigned value must lie within the overlapping range of both 
types: O .. maxint; for constants this is checked by Pass4, for variables a run-time 
check is generated. 

. In procedure calls, a parameter of type WORD may be substituted by any 
obJect matching the size of one word. 

• In procedure calls, a parameter of type ARRAY OF WORD may be substituted 
by an object of any type. 

• Objects of type ADDRESS are compatible with "cardinals" and with pointers. 

Special compatibility tests according to these relaxations are performed by the 
compiler in the appropriate situations. 

8.6.3 Evaluation of Constants in Expressions 

With the introduction of constant-expressions in Modula-2, it was necessary to 
implement expression evaluation at compilation time. Constant expressions are 
processed by Pass2 (declarations) and by Pass3 (set constructors and case labels). 
In Pass3 also normal expressions are evaluated, if possible. 

Direct evaluation could be dangerous for the compiler because of possible 
arithmetic errors (overflow). To prevent this situation the complier must be able to 
control the execution of all (arithmetic) operations. This is provided by the separate 
module MCOperations. 

J 

The implementation part of module MCOperations will depend on the computer's 
facilities. On Lilith, where overflow ends with a trap, addition and subtraction are 
checked against overflow before execution of the operation. For multiplications. a 
preceding overflow test is impossible, or at least too expensive, and therefore this 
operation Is simulated by an additive algorithm. 

Beside evaluation of constant-expressions, it is also interesting to perform an 
evaluation of normal expressions as far as It is possible. It is an inexpensive feature 
which shortens the generated code, and, sometimes, also helps to determine the 
actual type of the expression. It even saves code in Pass3, because it is possible to 
parse expressions and constant-expressions with the same procedures. 
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The Modula-2 language definition spectfies that an expression is evaluated from left 
to right on each precedence level. This ru le must be respected for evaluations at 
compilation time as well. It follows that constants in expressions may be evaluated 
by the compiler as long as they are not "preceded" by a variable. Evaluation after a 
variable on the same level would disobey the rule. 

Example 8.3 

In this example the stepwise pre-evaluation of an expression is shown: 

4 • (16 - 13} + 2. • 6 • (3 - a} • 3 • (7 OIV 2.} 

--> 4 • 3 + 2 • 6 • (3 - a} • 3 • (7 OIV 2} 
--> 12 + 2. • 6 • {3 - a} • 3 • (7 DIV 2) 
--> 12. + 12. • {3 - a) • 3 • (7 OIV 2.) 
--> 12. + 12 • (3 - a) • 3 • 3 

The information written on the inter-pass file ll1 depends on whether or not an 
evaluation is possible. If it is not possible, the operands and the operator must be 
passed in the original sequence to Pass4. In the other case (both operands are 
constants) the result of the operation should be passed only, i.e. operands and 
operator are replaced by the result. 

While parsing an expression, the decision whether or not an operation can be 
evaluated is only possible, after the second operand is known. This means that all 
components of the expression must be saved for a certain time. For this purpose 
Pass3 provides a backtracking feature. Normal output is generated, but at the 
beginning of an expression, simple expression, term, or factor a save position 
referring to the current output item is retained. After a successful evaluation of an 
operation, the output is reset to the corresponding save position and the new result 
replaces the previous output. 

One could imagine dtfferent implementations of this saving mechanism. A first 
approach could be to stack the whole output information until an expression is 
parsed completely and afterwards to write it on the inter-pass file. Another 
possibility is to write the output directly on the inter-pass f ile and, in case of 
replacement, to reposition the file. 

In the compiler the second possibility has been implemented. One reason for this 
decision was the small memory space on the PDP-11 computer. Another reason is 
that repositioning on the file is necessary for about 2 to 4 percent of all save 
positions only. Therefore, file positioning causes negligible overhead. 

~ 
Additional difficulties arise due to the replacement of the constants. The 
interspersed symbols like line numbers, errors, and compiler options must not be 
lost. The save mechanism has to remember the Interspersed information in the 
replaced part and to rewrite it on the inter-pass file. 



89 

8.7 Pass4 

Pass4 provides M-code generation for the Lilith computer. It is split into the separate 
modules: 

MCP4Main 

MCP4Giobal 

MCP4CodeSys 
MCP4AttrfbutSys 

MCP4Cai/Sys 
MCP4ExprSys 
MCMnemonics 

Main module with the parser of the statements and 
expressions. 

Input and lister output handler and scanner of the inter-pass 
file. 
Code output handler and generator of simple code patterns. 
Attribute handling and code generation for load and store 
operations. 
Code generator for procedure calls. 
Code generator for variables and expressions. 
Definition of the instruction mnemonics. 

The import-references are illustrated in Figure 8.8. 

Pass4 reads the inter-pass file IL 1 and translates the compiled unit into M·code. The 
generated code is written on the object file in a format that is accepted by the loader. 
information needed by the Lister is written on the inter-pass file IL2. 

The description of Pass4 and the M·code generation is the topic of a separate paper 
[Jac83]. 

8.8 Symfile 

The compiler part Symfile is called after Pass2, when a definition module is 
compiled. It selects In the symbol table all objects (name entries; see section 6.3) 
which are needed for a symbolic description of the definition module and writes the 
symbol file. It consists of the modules: 

MCSymFile 
MCSymDefs 

Main module, which generates the symbol file. 
Symbol definitions for symbol files. 

The import-references are illustrated in Figure 8.9. 

Module MCSymFile first generates a name list for each separate module described 
in the symbol table. These lists contain pointers to the selected name entries and 
are ordered according to the sequence, In which the objects of the module should be 
described on the symbol file. 

For the generation of the name lists, the export list (expp) and the local list (/ocp) of 
the symbol table entry of the compiled definition module are scanned. For all name 
entries in these lists, a recursive procedure is called which selects all needed name 
entries and appends references on them to the name lists. This procedure works 
according to the rule that an object referenced in a declaration must be declared 
first and therefore its reference must be appended first to the name lists. Before a 
reference to a selected object Is appended to the name lists, this procedure inspects 
the corresponding structure entry and selects all types used In this structure. The 
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Figure 8 .8 Pass4 
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Figure 8 .9 Symflle and Lister 
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I MCLister I 

I WriteStrings I 
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separate module to which a selected object belongs is Indicated by the name entry 
field globmodp. 

When a structure entry is inspected, it is marked in the field inlist . This prevents that 
a structure is inspected more than once. The field stidp refers to the name entry of 
the structure's name. This reference is also appended to the name lists. If the value 
NIL is assigned to stidp, no explicit name for this structure exists, I.e. It has been 
directly declared In a variable declaration or within another type declaration. 

In declarations of variables and record fields, Modula-2 allows the specification of a 
list of objects to which the same type Is assigned. A reconfiguration of such an 
object list from the infomnation stored in the symbol table would be difficult, because 
name entry lists are ordered according to the spelling Indices and not according to 
the declaration sequence. Instead, each variable and record field is declared 
separately on the symbol file. This implies problems with type declarations without 
explicit type name, because of specifying the same type structure in more than one 
declaration would be a contradiction to the type compatibility rules (equivalent type 
structures are incompatible). Therefore, the symbol file generator assigns a dummy 
name to such type structures. For other type structures which are elements of larger 
type structures (e.g. index range of an array), no explicit type name is required. 

Example 8.4 

Consider the following definition module: 

DEFINITION MODULE Example; 
EXPORT QUALIFIED rl, at; 
TYPE 

Rec =RECORD ft: REAL; f2, f3: [t .. lOO] END; 
VAR 

rt, r2 : Rec; 
at, a2 : ARRAY [0 .. 33] OF CHAR; 

END Ex amp 1 e . 

Dummy names are assigned to the subrange [1 .. 100] and to the array ARRAY [0 .. 33] 
OF CHAR. The generated name list references the objects in the following 
sequence: 

dummy-1 type: [1. .100] 
Rec 
r1 
dummy-2 type: ARRAY [0 . . 33] OF CHAR 
a1 
r2 
a2 

After the selection is completed, the name lists are scanned, and the selected 
objects are transfomned Into a sequence of symbols which are written on the symbol 
file. The symbols are encoded according to a type declared In module MCSymDefs. 
For all objects the actual Identifiers are Inserted Instead of the spelling indices. For 
variables the address offsets, for procedures the procedure numbers, and for type 



DEFINITION MODULE Scopes; 

FROM Base Types IMPORT Spelllndex, ldptr; 

EXPORT QUALIFIED 

NewScope, OldScope, Enterld, Searchld; 

PROCEDURE NewScope; 

PROCEDURE OldScope; 

PROCEDURE Enterld(id: ldptr); 

PROCEDURE Search ld(spix: Spelllndex; VAR id: ldptr); 

END Scopes. 

Name Lists: Selected objects to be described on the symbol file 

f irstmodu le 

Actually, f ield "ref" Is a 
pointer to the name entry 

of the indicated object 

Other objects used 

for declaration of 

type "ldptr" 

nextobject NIL 

ref ldptr 

Symbol File: A sequence of symbol modules 

Symbol Module BaseTypea (subset) Symbol Module Scopea 

Figure 8.10 Symbol File Generation 
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nextmodule NIL 

firstob]ect 
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specifications the size information are included. See also Figure 8.1 0. 

Information concerning the symbol file is given in Chapter 4. Its syntax is described 
in Appendix 2. 

8.9 Lister 

The Lister is designed to generate a listing file of the complied unit after either Pass2 
or Pass3, when syntactical errors have been detected, or after Pass4, when the 
compilation has been successful. This part consists of a main module only: 

MCLister Main module, generation of a program listing. 

The import-references are illustrated in Figure8.9. 

After Pass2 or Pass3, the Lister reads the interspersed line numbers and error 
information from the inter-pass file. Pass4 generates a file in a special format 
containing only line numbers, code addresses and error numbers; the listing file Is 
generated by merging the source text with the information on this file. 

The sequence of line numbers on the inter-pass files is not ordered (e.g. because of 
the change in· the symbol sequence in Pass1; see 8.4.1 ). Therefore, it is impossible 
that the Lister could directly generate the listing file. It has to reorder the line 
number information before the file can be written. 

In the current implementation the Lister maintains a circular buffer, Into which the 
incoming messages are Inserted in correct order. After the buffer is filled, also an 
output procedure is started which sequentially reads the buffer and writes the listing 
file. This implementation is very tricky and difficult to understand. It has been 
chosen because the error messages may occur in any number and the length of the 
compiled unit is unknown. 

Nevertheless, a simpler and probably faster implementation would be possible, if a 
maximum number of lines in the source f ile of a compilation unit is assumed (3000 
lines seem to be an unreached limit). This is acceptable for a compiler with a 
separate compilation facility. With this restriction, the Lister first could read the 
whole line number information from the inter-pass f ile and, after this information has 
been ordered internally, write the listing f ile. 
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9 Conclusions 
The first section of this chapter shows that Modula·2 iS successfully used at ETH 
Zurich and all over the world. Large program systems have been developed which 
extensively use the separate compilation feature of Modula·2. 

In the further sections, some aspects of the separate compilation concept of 
Modula·2 and its implementation on Lilith are analyzed. This is done for three 
subjects. The f irst is the separate module which is analyzed for its usefulness as a 
programming tool. A classification of typical separate modules Is given. Second, the 
Importance of symbol f iles is discussed. it turns out that symbol f iles In an open 
system environment do not only serve for information transfer of the compiler , but 
they also guarantee the stability and uniqueness of a system Interface. Finally, the 
actual compiler implementation is discussed. 

9.1 Use of Modula-2 

Modula·2 is about to become a successful and widely used programming language. 
The simple, but powerful language concepts allowed a comfortable, reliable, and 
efficient implementation of Modula-2. About 200 copies of the Modula·2 compiler 
developed for the PDP·11 have been distributed all over the world, and the Modula·2 
compiler for Lilith has been mailed to more than 100 destinations. In addition, 
several Modula·2 compilers for other computers (e.g. VAX, Motorola 68000, Intel 
8088) have been derived from these compilers; at the Computer Cent!!( of ETH 
Zurich, the Modula·2 compiler for the PDP·11 has been translated into Pascal and 
developed to a package of cross-compilers, called SMILER·2, running on the CDC 
6000 1 Cyt>er installation and generating code for the PDP-11, Motorola 6609, and 
Motorola 68000. 

Modula-2 is also heavily used on the 30 Lilith computers of the lnstitut fiir lnformatik 
ETH Zurich. Modula·2, Lilith, and the comfortable programming environment, are 
the tools which are used by most members of the lnstltut. Several large system and 
application programs have been implemented on Lilith. They all extensively use the 
separate compilation facility. Separate compilation turned out to be highly useful 
and mandatory for the development of large programs and software systems. For 
some of these programs, the number of separate module$ and the memory space 
needed for code and global data of these modules is listed in the following 
descriptions. 

LID AS 

The program system UDAS [Reb83] Is a data base management system which 
Interactively helps the user to design and use a data base. A data base Is defined 
according to an extended relational data model, I.e. by entity sets (relations) and 
relationships between them. It is represented by a collection of data modules 
encoded In Modula/R [Koc82). Modula/R Is an extension of Modula·2 with 
concepts of the relational data base model. 

One component of UDAS Is Gambit which int8(8ctively supports the design of a data 
base. It consists of sevl!(aJ programs which are subsequently called by a common 
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base part and which transform the user defined relations Into a Modula/R data base 
representation. The base part includes the common data of Gambit, the relational 
data system of UDAS, and a package of screen software. The following table shows 
the size of the base part and the data definition program which is called f irst. 

Gamb1t Data Daffn1tion 8 modules 11.90 kword 
Gambit Base Part 5 modules 2.38 kword 
Relational Dat a System 6 modules 18.48 kword 
Screen, W1ndowhandler 6 modul es 8.34 kword 
library Modules 4 modules 1.47 kword 

------------------------ ---------- -----------
LIDAS-Gamb 1 t 29 modules 42.59 kword 

XS·1 

The program system XS-1 [Ber82] iS an interactive operating system which supports 
the execution of application programs. According to dialog structures supplied by 
the application program, it controls the user's dialog with the program. It Is a 
philosophy of the system to provide the user with a consistent user Interface. 

The main components of XS-1 are the dialog control modules, the tree-file system 
which maintains a tree structure on f iles, and a package for displaying information 
on the screen. 

Dialog Control 
Tree-File System 
Screen , Library Modul es 

XS-1 

Cali ban 

8 modules 
22 modul es 
13 modules 

43 modules 

10.06 kword 
11.81 kword 

7.69 l<word 

29.57 kword 

The program Caliban [Fre83] is an information retrieval system. It helps the user to 
retrieve Information from a set of data which is stored on a file. For retrieving the 
stored information, the system uses a large number of indices which are organized 
in a tree structure. In one of its application, Caliban is supplied with a catalog of a 
library. In this catalog, information about 800 documents is stored. The documents 
are indexed by a tree containing 13000 nodes. 

The main components of Callban are the user Interface, a package to display the 
tree structure, modules which supply the retrieval functions, and the tree· file system 
which administrates the index tree. 

Caliban User Interface 25 modules 14.83 kword 
Tree Display 14 modules 5.46 kword 
Retrieval Functions 6 modules 3.78 kword 
Tree- File System 22 modules 12,24 kword 
Screen, Windowhandler 6 modules 4.24 kword 
Library Modules 6 modules 1.41 kword 

------------------------ ---------- -----------
Caliban 79 modules 42.00 kword 
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Medos-2 

All the programs mentioned above base on the operating system Medos-2. It Is the 
resident part of the programming environment on Lilith. Medos-2 is also 
programmed in Modula·2 and mainly supports file access, terminal Input/output, 
and program execution. 

File Handling 
Terminal Input/Output 
Program Execution 
Further Modules 

Nedos-2 

9.2 Separate Modules 

3 modules 
4 modules 
2 modules 
5 modules 

----------
14 modules 

8.30 kword 
2.20 kword 
2.32 kword 
1.35 kword 

-----------
14.18 kword 

The concept of separate modules is highly useful and mandatory for the 
development of large programs and software systems. The splitting of separate 
modules into definition and implementation modules enables flexible and, as long as 
the definition modules remain unchanged, Independent development of the separate 
program parts. Moreover, it makes It possible for the system to detect a change in a 
definition module, because the change manifests itself as recompilation. Three 
characteristic classes of separate modules may be distinguished: Program 
components, library modules, and system interlaces. 

Program Components 

For reasons of convenient development of a program, it is sometimes useful to split a 
program Into a collection of separate modules. This decomposition helps to reduce 
the size of the compilation units and therefore to save compilation time. Program 
components are typically defined for a specific application in a program. 

Library Modules 

Library modules may be considered as general program components whose 
interface is not specifically tailored to a single program. Usually, they provide 
activities or services which may be required by several programs. Such services are, 
for example, mathematical functions, conversion and formatting routines, and 
procedures for dialog control. Library modules typically export a collection of 
procedures or functions and do not maintain data of their own. 

System Interfaces 

System Interfaces are provided by modules which control the access to certain 
resources, e.g. memory management, disk organization, screen layout. Such 
modules, and In particular their local data, typically survive the execution of a 
program and are responsible for consistency of the controlled resources. It Is an 
important fact that a resource cannot be simultaneously controlled by several 
modules (e.g. if more than one module would control the f iles on a disk, 
Inconsistencies would occur within no time). This Implies that a module with a 
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system interface must be specified quite generally and respect the needs of most 
programs. This is especially true for the interfaces of the operating system. 

The quality of a separate module is highly dependent on the quality and stability of its 
definition module. Frequent changes and recompllations of definition modules are 
very inconvenient for the importing clients and should be avoided. As the number of 
dependencies increases with the generality of a module, it is important that library 
modules and especially system interfaces be well designed before they become 

public. 

The definition of a good interface is not trivial at all and requires a great deal of 
experience in modularization and knowledge about the anticipated use. A good 
guideline might be to have a small and simple Interface which hides a (possibly 
complex) internal implementation. This Is especially proposed for the design of 
program components. Many programmers are tempted to express the modular 
structure of a program by a corresponding number of separate modules. That 
number thereby tends to become excessively large. lllere are also programmers 
who derive the number of separate modules from the number of source code lines. 
The result of such "modularizatron" is that there will exist modules which are 
imported by Just one other module and whose Interface Is usually complicated. All 
these programmers forget that Modula-2 also supports local modules which are 
more appropriate in some cases. Local modules help to keep the Interfaces and 
dependencies of separate modules small. 

A reason for not using local modules might be that the syntax for local modules Is 
slightly different from the syntax for separate modules, i.e. in local modules the 
specification of the exported objects is not separated from the Implementation. This 
makes some changes of the source text necessary when a local module Is converted 
to a separate module and vice versa. Program development could be facilitated if no 
changes would be necessary for conversion. Certain components could be 
separated temporarily, until they are In a stable stage which allows to convert them 
again Into a local module. This could help to keep the number of separate modules 
In larges programs small. 

Proposal 

Separate modules and local modules should be Identical in syntax, I.e. the concept 
of splitting a module into definition and implementation module should be generally 
introduced for modules in Modula·2. This makes a slight modification of the 
Modula·2 syntax is necessary, I.e. the redefinition of the syntactic elements 
ModufeDeclaration and Compilation Unit (see also Appendix 1 ): 

ModuleDeclaration = DEFINITION MODULE ldent ";" { import} [export] 
{definition } END ldent I 

[IMPLEMENTATION] MODULE ident [priority]";" 
{ import } block ldent . 

CompllationUnit = ModuleDectaration ".". 

This generalization of definition and Implementation modules, which Is also provided 
by Ada, would further be valuable to Improve the readability of a program text. The 
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description of the exported objects would be concentrated in an explicit place and 
no longer be dispersed over a whole module body. The partitioning also helps to 
avoid forward references in the statement parts. It would be possible to apply the 
declaration rule, that objects used in declarations must be declared previously, on 
statement parts as well. And this would probably make slngle·pass compilation 
possible. 

9.3 Symbol Files 

The importance of the symbol files has grown during the development of the Lilith 
system. When the project was started, the symbol files were considered as a 
medium for transferring compiler internal information between several compilations. 
The first versions therefore were directly based on the type Symbol used for the 
inter-pass communication. Therefore, with each modification of this type a new 
version of encoding of symbol files was generated which was Incompatible with its 
ancestors. This forced the recompilation of all programs only for reasons of 
compiler modifications. 

For making the symbol files more independent of the Internal compiler organization, 
a separate enumeration type, SymFileSymbols (see Appendix 2), was defined which 
allowed a more general encoding of symbol files. This new organization has been 
satisfactory until now, but further considerations show that the information on the 
symbol file should be represented in a still more generalized format. 

On Lilith, the operating system Medos·2 is completely written in Modula·2 and the 
interface to the operating system is directly specified by a collection of definition 
modules. The advantage of such an interface specification Is that It may be 
considered by the user as a collection of library modules which provide special 
services. The compiler can perform complete parameter checking on all references 
to the operating system. This improves security In the use of the functions of the 
operating system. As a consequence, the symbol files which represent the system 
interface must be stable, as long as the interface is stable. This makes the symbol 
file organization dependent on the operating system, far from belonging to the 
compiler only. 

Generality of the symbol file is also necessary if more than one programming 
language is supported on a computer system and if combination of separate parts 
written in different languages is desired. 

Proposal 

The format of the information described on the symbol file should be highly 
Independent of the Internal data representation of a complier. It should be globally 
defined by the operating system and respected by all compilers generating code for 
this system. Perhaps, a similar encoding as used for object files (see Appendix 3) 
would be appropriate. In addition, a common strategy for allocating data and a 
common calling sequence for activating procedures should be defined. 
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9.4 The Modula-2 Compiler on Lilith 

The actual structure and organization of the Modula-2 compiler on Lilith has been 
influenced to some degree by its history, and this has not always been to its 
advantage. Instead of writing the compiler from scratch, the development was 
started with the existing Modula·1 compiler on the PDP-11. The advantage of this 
choice was a rapid implementation of a first Modula-2 version. Afterwards, many 
hours were spent to convert the given complier structures into structures which take 
advantage of Modula·2's enriched facilities. Relics of its ancestor still survive in the 
current compiler version. This Is not all negative. Especially, the given 
modularization was well chosen and facilitated the further development of the 
complier. Perhaps, in retrospect, a better decision would have been to first change 
the Modula-1 compiler to accept Modula·2, and afterwards to write a new compiler 
from scratch. A more Independent general design of the compiler structures would 
have been possible. 

A second important fact which influenced the compiler organization was the 
available hardware. The small memory space on the PDP-11 (28 kword) was a 
limitation which, in order to save memory space, forced many reorganizations (e.g. 
identifier table on a file, linear links in the symbol table). It also influenced the 
multi·pass organization of the compiler. The final partition into four passes was an 
optimal choice for the PDP-11. As one goal of the compiler project was to first have 
a cross compiler on the PDP-11 to develop the basic software for Lilith, and 
afterwards to transport this compiler to Lilith, the multi·pass character was also 
given for the final compiler. 

The memory space of Lilith (128 kword) would certainly allow the Implementation of 
a single· pass complier. This is, however, impossible without a slight modification of 
the Modula-2 language in order to tackle forward references. Such a modification 
might be, for example, the generalized module concept as It Is proposed above. 

The separate compilation feature has been very useful for the development of the 
compiler. On the one hand it was possible to reduce the size of the compilation 
units, on the other hand it helped to guarantee that all compiler parts refer to the 
same global data structure definitions. This improved the security and reliability of 
the compiler. The first three passes are similar in their modular structure and mainly 
consist of three separate modules. The main module contains the parser which 
processes and checks the symbol sequence of the compiled unit. The input·output 
module handles all direct operations on files and makes the other modules 
independent of the underlying file system. The third module controls the scopes and 
the links in the symbol table. Beside this general subdivision some supplementary 
separate modules (MCP1Reals, MCP2Reference, MC0perations) were designed. 
These provide special services. The main reason for splitting them from the other 
modules was that their implementation was considered as instable and heavily 
dependent on the environment of the compiler. For example, In order to provide the 
debugger with the needed information, the implementation of module 
MCP2Reference has been changed several times without affecting the definition 
module and the other modules of Pass2. 

This paragraph closes with a comment on hiding data In modules. It is widely 
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accepted that a good concept in modular programming is to use a module structure 
to hide data and data structures and to allow external access and operations on 
these data by a collection of exported procedures only. This protects the data 
against unauthorized and inconsistent modifications and makes the clients 
Independent of the actual data organization. This concept is generally respected in 
the Modula-2 compiler, with one important exception: The symbol table structure is 
globally defined and directly accessible from all compiler modules. It is a very 
fundamental structure in the compiler and Its data are frequently inspected and 
modified by all compiler parts. Access via procedures would heavily burden the 
compilation process. The disadvantage of the chosen solution is that the interface 
becomes large and contains a detailed structure description which always fills the 
symbol table when an importing module is compiled. Compromises between 
security and efficiency are sometimes necessary and inevitable in large programs. 
In library and system modules, however, open structures should be avoided and 
security should be the highest principle. 
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Appendix 1 Syntax of Modula-2 

First, the Modula-2 syntax is listed as it Is defined in the Modula-2 report (Wir82]. A 
Lilith specific extension is described later. 

ident 
number 
integer 

real 
ScaleFactor 
hexDigit 
digit 
octaiDigit 
string 
qualident 
ConstantDeclaration 
ConstExpression 
relation 
SimpleConstExpr 
AddOperator 
ConstTerm 
MuiOperator 
ConstFactor 

set 
element 
TypeDeclaratlon 
type 

Simple Type 
enumeration 
ldentllst 
SubrangeType 
Array Type 
RecordType 
FieldllstSequence 
Field List 

variant 
Caselabelllst 
Case Labels 
SetType 
PolnterType 
Procedure Type 
Forma!Typellst 

= letter {letter 1 digit} . 
= integer I real. 
= digit {digit} 1 octal Digit { octaiDigit} ( "B"I"C") 1 

digit { hexDigit} "H". 
= digit {digit} "." {digit} [Scale factor]. 
= "E" ["+"I"-" 1 digit {digit}. 
= digit I"A"I"B"I"C"I"D"I "E"I"F". 
= octaiOigit I "8" I "9" . 
= ~~a .. 1~~, .. I "2" J "3" I "4 11 Jus .. I "6" I "7" . 
= "'" {character} "'"I"" {character}"". 
= ldent { ". " ident } . 
.. ldent " = " ConstExpresslon . 
= SimpleConstExpr [relation SimpleConstExpr 1 . 
= II=" I'*# If I "(> .. 1 "("I"<=" I")" I">. "liN . 
= ["+"I"-"] ConstTerm { Add()perator ConstTerm} . 
= "+"1"-" IOR. 
= Constfactor { MuiOperator ConstFactor}. 
"'"•" I " /" I OIVI MOO lAND I"&". 
= qualident I number I string I set I 

"(" ConstExpression ")" 1 NOTConstFactor. 
" ( qualident] "{" [element { ","element} 1 "}" . 
= ConstExpresslon [ " .. " Canst Expression 1 . 
= ldent "=" type. 
= Simple Type I Array Type I RecordType I SetType I 

PointerType I Procedure Type. 
= qualident I enumeration I SubrangeType. 
= "(" fdentlist ")" . 
= ident { "," ldent } . 
= "[" ConstExpression " .. " ConstExpression "]" . 
.. ARRAY SimpleType { " ,"Simple Type} Of type . 
= RECORD FieldllstSequence END . 
= FteldList { ";" Reldllst}. 
= ( ldentlist ":"type I 

CASE [ ident ":"] qualident OF variant {"I" variant} 
(ELSE ReldlistSequence] END] . 

= CaseLabeiList ":" ReldlistSequence. 
= Caselabeis { "," Caselabefs } . 
• ConstExpression [ " .. " ConstExpression ] . 
= SET OF Simple Type. 
= POINTER TO type . 
• PROCEDURE ( FonnaJTypeList 1 . 
.. "(" ( (VAR 1 FormaJType { "," (VAR] FonnaJType} 1 ")" 

[ ":" quafident]. 
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VariabfeDeclaration = ldentllst ":"type . 
designator 
Explist 
expression 
SimpleExpression 
term 
factor 

= qualident { "." ident I"[" Explist "]"I "t"} . 
= expression ( "," expression } . 
= SimpieExpression [relation SlmpleExpression] . 
= [" +" 1"-"] term { AddOperator term} . 
= factor { MuiOperator factor}. 
= number 1 string 1 set 1 designator [ ActuaiParameters 1 1 

"("expression") " I NOTfactor . 
Actual Parameters = "(" [ Expllst] ")" . 
statement 

assignment 
ProcedureCall 
StatementSequence 
lfStatement 

CaseStatement 

case 
WhileStatement 
RepeatStatement 
ForStatement 

= [assignment I ProcedureGalll • 
lfStatement I CaseStatement I WhifeStatement I 
RepeatStatement I LoopStatement I ForStatement I 
WithStatement I EXIT I RETURN [expression]] . 

= designator ":=" expression. 
= designator [ ActuaiParameters] . 
= statement { ";" statement } . 
= IF expression THEN StatementSequence 

{ ELSIF expression THEN StatementSequence} 
[ELSE StatementSequence] END . 

=CASE expression OF case {"I" case} 
[ELSE StatamentSequence] END . 

= caseLabellist " :" StatementSequence. 
= WHILE expression DO StatementSequence END. 
= REPEAT StatementSequence UNTIL expression. 
=FOR ident ":""expression TO expression 

[BY ConstExpression] DO StatementSequence END . 
LoopStatement = LOOP StatementSequence END . 
WithStatement = WITH designator DO StatementSequence END . 
ProcedureDeclaratlon= ProcedureHeading ";" block ldent . 
ProcedureHeading = PROCEDURE ident [ FormaiParameters] . 
block .. {declaration} [BEGIN StatementSequence] END . 
declaration = CONST { ConstantDeclaration ";" } I 

TYPE { TypeDecfaratlon ";"}I 
VAR { VariableDeclaration ";"}I 
ProcedureDeclaration ";"I ModuleDeclaration ";". 

FormaiParameters .. "(" [ FPSection { " ;" FPSection}] ")" [ ":" qualident]. 
FPSection = [ VAR] ldentList " :" Forma!Type. 
ForrnaiType = [ARRAY OF 1 quafident. 
ModuleDeclaration = MODULE ident [priority] " ;" {import} [export 1 

block ident . 
priority 
export 
Import 
Definition Module 

definition 

.. "[" ConstExpression ")" . 
= EXPORT (QUALIFIED] fdentlist ";". 
= [FROM ldent] IMPORT ldentList ";". 
= DEFINITION MODULE ident ";" { Import} (export] 

{ definition } END ident " ." . 
= CONST { ConstantDeclaration ";"}I 

TYPE { ident ["="type] ";"}I 
VAR { VarlabfeDeclaration ";"}I 
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Program Module 

CompifationUnit 

ProcedureHeading ";" . 
.. MODULE ldent [priority] ";" {import} 

block ldent "." • 
= Definition Module I 

[IMPLEMENTATION] Program Module. 
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The only extension of Modufa·2 for Lilith Is the addition of SO·calfed code 
procedures. A code procedure is a declaration In which the procedure body has 
been replaced by a (sequence of) code number(s), representing M·code instructions 
(see [Wir81]). Code procedures are a facflity to make avallabfe routines that ere 
micro·coded at the level of Modufa·2. This facility is reflected by the following 
extension to the syntax of the procedure declaration: 

ProcedureDecfaration• ProcedureHeading ";" (block 1 codeblock) ident. 
codebiock • CODE CodeSequence END • 
CodeSeQuence • code {";"code}. 
code • [ ConstExpression 1 . 

) 
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Appendix 2 Syntax of the Symbol File 

The terminal symbols of the symbol file syntax correspond to the constants In type 
SymFileSymbols, declared In module MCSymDefs: 

SymFileSymbol s " 
(endfileSS, 
unitSS, endunitSS, 1mportSS, exportS$, 
constSS, normalconstSS , realconstSS , str1ngconstSS, 
typSS, arraytypSS , recordtypSS, settypSS, polntertypSS , 
lliddentypSS, 
varSS, procSS, funcSS, 
identSS, periodS$, colonS$, rangeS$, 
1 parentSS, rparentSS, 1 bracl::etSS, rbracketSS. 
caseSS, ofSS, elseSS. endSS) 

The information on the symbol file is a sequence of bytes, packed into words as 
follows: 

word .. firstByte + secondByte • 4006 

Symbols and characters are represented in one byte by their ordinal value. Numbers 
are split Into two bytes with byte1 = number 0/V 4008 and byte2 ,. number MOD 
4008. 

Unit 
Header 
Symfile 
Value 
Module Key 
DefModName 
!dent 
SymboiModule 

Definition 

ConstDecfaration 
Constant 
Quail dent 
Rea!Const 
RHigh 
Rlow 
StringConst 
TypeDeclaratfon 
Type 

Simple Type 

= Header { SymboiModule } ENDFILESS. 
= Symfile ModufeKey DefModName . 
= Value. I symbol file syntax version I 
= NORMALCONSTSS Number. 
• Value Value Value. I compilation time stamp I 
= !dent . I name of compiled definition module I 
= IDENTSS Character {Character} 'OC'. 
"' UNITSS ModuleKey !dent [ IMPORTSS {!dent}] 

( EXPORTSS { !dent} ) {Definition} ENDUNITSS. 
2 CONSTSS { ConstDecfaration } 1 

TYPESS { TypeDeclaration } I 
PROCSS ProcHeading I 
VARSS { VarDeclaratlon } . 

= I dent Constant. 
• Value Quail dent I ReaiConst 1 SlringConst . 
.. I dent [ PERIODSS !dent 1 . 
= REALCONSTSS RHigh Rlow. 
=Number. /upper part of real number/ 
" Number . /lower part of real number/ 
= STRINGCONSTSS Character {Character} 'OC' • 
" !dent Type . 
= Simple Type 1 HIDDENTYPSS I ArrayType I RecordType I 

SetType I Pointer Type I ProcType. 
= Oualldent 1 Enumeration I Subrange . 



Enumeration 
Subrange 
Array Type 
RecordType 
Fields 
Variants 

Size 
Offset 
VarVal 
Set Type 
PointerType 
ProcType 

ProcHeading 
ProcNum 
VarDeclaration 
Address 
ReiAddr 
AbsAddr 
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c LPARENTSS {I dent Value} RPARENTSS. 
= LBRACKETSS Constant RANGESS Constant RBRACKETSS . 
= ARRA YTYPSS Simple Type OFSS Type. 
= RECORDTYPSS {Fields} (Variants 1 ENDSS Size . 
= I dent Offset COLONSS Type . 
= CASESS COLONSS Quail dent 

{ OFSS { VarVal} COLONSS [Variants 1 Size} 
[ ELSESS [Variants 1 Size] ENDSS . 

=Value . 
=Value. 
=Value. 
= SETTYPSSSimpleType. 
= POINTERTYPSS Type. 
= PROCSS LPARENTSS{ [VARSSJ[ARRAYTYPSS) 

Quail dent} RPARENTSS [ COLONSS Qualldent J . 
= !dent ProcNum ProcType. 
=Value. 
= I dent Address COLONSS Type. 
= ReiAddr I AbsAddr . 
.. Value. 
= LBRACKETSS Value RBRACKETSS. 
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Appendix 3 Syntax of the Object File 
The format of the object file is chosen according to a linker-loader input format of 
Medos-2. Its syntax is generally defined as follows: 

Loadfile 
Block 
81ockType 
81ockSize 
81ockWord 

={Block}. 
= Block Type BlockSize { BlockWord} . 
= "2008"1"201 B" 1····1"3778" . 
= Number. /number of BlockWords/ 
=Number. 

The load file is a sequence of words, with Block Type and Number each represented 
in one word. 

The object file generated by the compiler obeys a syntactic structure, called Module. 

Module = [ VersionBiock] HeaderBiock [Import Block] 
{ ModuleCode 1 Data81ock} . 

Version81ock = VERSION 81ockSize VersionNumber. 
81ockSize = Number . 
VerslonNumber = Number. 
Header81ock = MODULE 81ockSize ModuleNarne DataSize 

[ CodeSize Flags ] . 
ModuleName = Moduleldent ModuleKey. 
Module! dent = Letter {Letter 1 Digit} { "OC"}. /exactly 16 characters/ 
ModuleKey = Number Number Number. 
DataSize = Number. / in words/ 
CodeSize 
Flags 
lmport81ock 
ModuleCode 
Code Block 
Word Offset 
CodeWord 
Fixup81ock 
ByteOffset 
DataBiock 
Data Word 

= Number. lin words/ 
=Number. 
= IMPORT BlockSize { ModuleNarne } . 
= CodeBiock [ FixupBiock] . 
= CODETEXT BlockSize WordOffset { CodeWord } . 
= Number. /in words from the beginning the module/ 
=Number . 
= FIXUP 81ockSize { ByteOffset} . 
= Number. l in bytes from the beginning of the module/ 
= DATATEXT81ockSize WordOffset { DataWord}. 
=Number. 

Following frame types are assigned: 

VERSION 
MODULE 
IMPORT 
CODETEXT 
DATA TEXT 
FIXUP 

= "2008". 
= "2018". 
s::: "2026 ... 
= "2038" . 
:;: "2048". 
= "2058". 

A loaded module consists of two nonovertapping frames: A data frame and a code 
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frame. Data blocks are loaded Into the data frame, code blocks into the code frame. 
Fix-up blocks contain binding infonnation for the linker-loader. The offsets of a 
fix-up block refer to the loaded code In the code frame where provisional module 
numbers must be replaced by aclual module numbers which are detennined and 
assigned by the linker-loader. The provisional modules are assigned by the compiler 
and correspond to the modules listed in the import block. A provisional module 
number 0 indicates a reference to the own module. 

) 
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Appendix 4 Syntax of the Inter-pass Files 
In the following syntax descriptions the identifiers written in capitals are tenninal 
symbols and correspond to the constant values of type Symbol, declared in module 
MCBase: 

Symbol = 
(eop, 
andsy, divsy, times, slash, modsy, notsy, plus, minus, orsy, 
eql, neq, grt, geq, lss, leq, insy, 
lparent, rparent, lbrack, rbrack, lconbr, rconbr, 
comma, semicolon, period, colon, range, 
constsy, typesy, varsy, 
arraysy, recordsy, variant, setsy, pointersy, tosy, arrow, hidden, 
importsy, exportsy, fromsy, qualifiedsy, 
codesy, beginsy, 
casesy, ofsy, ifsy, thensy, elsifsy, elsesy, loopsy, exitsy, 
repeatsy, untilsy, whilesy, dosy, withsy, 
forsy, bysy, returnsy, becomes, endsy, 
call, endblock, 
definitionsy, implementationsy, proceduresy, modulesy, symbolsy, 
ident, intcon, cardcon, intcarcon, realcon, charcon, stringcon, 
option, errorsy, eel, 
namesy, 
field, anycon) 

lnfonnation on the inter-pass files is a sequence of words. Numbers and pointers 
are represented in one word. Symbols and position numbers are packed together 
into one word as follows: 

ORD(symbol) • 4008 + pos 

Line marks, error messages, and compiler options are interspersed on the inter-pass 
files at any position. They apply to following syntax definition: 

Interspersed 
Line Mark 
LlneNumber 
Error 
ErrorNumber 
Option 
LetterVal 
Switch 

= LineMark 1 Error 1 Option . 
= EOL LineNumber. 
=Number. 
= ERRORSY ErrorNumber. 
=Number. 
= OPTION LetterVal Switch . 
=Number. 
= PLUS I MINUS. 

4.1 Inter-pass File between Pass1 and Pass2 

lnfonnation on thiS file consists of a sequence of symbol modules followed by the 
symbolic representation of the compiled unit. Non-teminal symbols beginning with 
Sym Indicate supplementary infonnation which iS contained in symbol modules only. 



Unit 

Module Key 
Value 
ModUle 
!dent 
Spelllndex 
Priority 
Constant 
ConstExpr 
SimpleConstExpr 
ConstTerm 
ConstFact 

SymType 
Qualldenl 

~EntryAddr 
Length 
SetConstr 
Elementlist 
Element 
MuiOp 
AddOp 
ReiOp 
Import 
ldentllst 
Export 
Block 
Definition 

ConstDecl 
TypeOecl 
Type 

= { SYMBOLSY MOduleKey Module} 
( OEFINTtONSY (IMPLEMENT A TtONSY I MODULESY) 
ModuleEOP. 

= CARDOON Value CARDOON Value CARDOON Value. 
.. Number. 
.. !dent [ Priority] { Import } [ Export ] Block . 
.. IDENT Spelllndex. 
.. Number. 
.. LBRACK Constant RBRACK . 
.. ConstExpr. 
.. SimpleConstExpr [ Re!Op SimpleConstExpr ] . 
= [PLUS I MINUS] ConstTerm { AddOp ConstTerm} . 
.. ConstFact { Mu!Op ConstFact} . 

.. INTCON Value I 
CARDCON Value [ SymType] I 
INTCARCON Value I 
CHARCON Value I 

:j.: REALCON EntryAddr I /real value In heap/ 
..f STRINGCON EntryAddr Length I 

Qualldent [ SetConstr ] I 
SetConstrl 
LPARENT ConstExpr RPARENT I 
NOTSY ConstFact. 

• Quail dent. /typename of constant in symbol file/ 

= I dent { PERIOD ldent} . 
• Number. 
• Number. 
• LCONBR [ ElementList) RCONBR . 
• Element {COMMA Element } . 
• Constant [RANGE Constant] • 
• TIMES I SLASH I OIVSY I MODSY I ANDSY. 
• PLUS I MINUS I ORSY. 
• EQL I NEOIGRT I GEOI LSSI LEQ(INSY. 
• IMPORTSY ldentList I FROMSY ldent ldentList. 
.. ldent { tdent} . 
• EXPORTSY ldentlist I QUALIAEDSY ldent list. 
.. { Definition} [ BEGINSY StatSequence] ENDBLOCK. 

= CONSTSY { ConstDecl } I 
TYPESY { TypeDecl } I 
VARSY { VarDecl} I 
PROCEDURESY Procedure I 
MODULESY Module. 

• !dent Constant • 
• ldent Type . 
• Simple Type I 

HIDDEN( 
ARRAYSY Simple Type OFSY Type I 
RECORDSY { Aeldllst} ENDSY [ SymSize] I 
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Simple Type 
Subrange 
Enumeration 
SymVatue 
Field list 

SymOffset 
SymVarVal 
SymSize 
FormaiTypelist 

FormaiType 
VarDecl 
Address 
AbsAddress 
SymAddress 
Procedure 

SymProcNum 
FormaiParlist 

CodeBiock 
StatSeQuence 
Statement 

Designator 

ExpressiOn 

SETSY Simple Type I 
POINTERSY Type I 
PROCEDURESY [ FormaiTypeList] • 

= Qualldent 1 Subrange 1 Enumeration • 
= LBRACK Constant RANGE Constant RBRACK . 
= LPARENT {I dent [ SymValue]} RPARENT . 

= CARDCON Value . 
.. { l dent [ SymOffset I } COLON Type I 

CASESY [ ldent] COLON Quail dent 
{ OFSY ( Elementlist I { SymVarVal} ) COLON 
{Field list} [ SymSize] } 

[ ELSESY { Field list} [ SymSize I ] ENDSY. 

= CARDOON Value. 
= CARDCON Value. 
= CARDCON Value. 
= LPARENT { [ VARSY] FormaiType} RPARENT 

(COLON Qualldent] . 
= ( ARRAYSY] Qualldent. 
= { I dent [Address] } COLON Type . 
= AbsAddress I SymAddress . 
= LBRACK Constant RBRACK. 
= CARDCON Value. 
= ldent ( SymProcNum PROCEDURESY FormaiTypellst I 

( FormaiParlist] [Block I CodeBiock] ) . 
= CARDCON Value. 
= LPARENT { [ VARSY] { ldent} COLON FormaiType} 

RPARENT [COLON Qualldent) . 
= CODESY [Constant {COMMA Constant} ] ENDBLOCK. 

.. { Statement } • 
= BECOMES Designator COMMA Expression I 

CALL Designator Pararnlist I 
IFSY Expression StatSequence 

{ ELSIFSY Expression StatSequence} 
[ ELSESY StatSequence) ENDSY I 

WITHSY Designator StatSequence ENDSY I 
CASESY Expression 
{ OFSY ElementList COLON StatSequence } 
[ ELSESY StatSequence] ENDSY I 

LOOPSY SlatSequence ENDSY I 
WHILESY Expression StatSequence ENDSY I 
REPEATSY StatSequence UNTILSY Expression I 
FORSY ldent COMMA Expression TOSY Expression 
[ BYSY Constant ] StatSequence ENDSY I 

RETURNSY ( LPARENT Expression A PARENT] I 
EXITSY. 

= Qualldent 
{ LBRACK Expression RBRACK I PERIOD ldent I ARROW}. 

.. SimpleExpr [ Re!Op SimpleExpr] . 



SlmpleExpr 
Term 
Factor 

ParamUs! 

.. [PLUS I MINUS) Term { AddOp Term}. 
= Factor { MuiOp Factor} • 
"' INTCON Value I 

CARDCON Value I 
INTCARCON Value I 
CHARCON Value I 

~ REALCON EntryAddr I /real value In heap/ 
.l STRINGCON EntryAddr Length I 

SetConstrl 
Designator [ParamUs! I SetConstr] I 
NOTSY Factor I 
LPARENT Expression RPARENT. 
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= LPARENT (Expression {COMMA Expression}) RPARENT. 

4.2 Inter-pass File between Pass2 and Pass3 

Information on this file contains the statement parts of the procedures and modules 
of the compiled unit. The procedure and mOdule headers reference the 
corresponding name entries in the symbol table. 

Unit 
Module 

Q Nptr 
Import 
I dent 
Spelllndex 
Block 

Procedure 
CodeBiock 
Constant 
ConstExpr 
SimpleConstExpr 
ConstTerm 
ConstFact 

Value 
..j EntryAddr 

Length 

= Module EOP . 
• MODULESY Nptr {Import} Block. 
• Pointer. 
= FROMSY ldent { ldent} llMPORTSY {!dent} . 
• !DENT Spelllndex. 
• Number. 
., { Module I Procedure } [ BEGINSY StatSequence ) 

ENDBLOCK. 
c PROCEDURESY Nptr [Block I CodeBiock] . 
.. CODESY [Constant {COMMA Constant} ] ENDBLOCK. 
"' ConstExpr . 
D SimpleConstExpr [ RelOp SlmpleConstExpr ] . 
• [PLUS I MINUS] COnstTerm { AddOp COnstTerm}. 
• ConstFact { MuiOp ConstFact} . 
.. INTCON Value I 

CARDOON Value I 
INTCARCON Value I 
CHARCON Value I 

\- REALCON EntryAddr I /real value in heap/ 
-f STRINGCON EntryAddr length I 

Qualldent [ SetConstr] I 
SetConstrl 
LPARENT ConstExpr RPARENT I 
NOTSY ConstFact. 

• Number . 
• Number . 
• Number. 
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Quail dent 
SetConstr 
Elementllst 
Element 
MuiOp 
AddOp 
ReiOp 
StatSequence 
Statement 

Designator 

Expression 
SimpleExpr 
Term 
Factor 

Paramlist 
Name 

= {!dent PERIOD } !dent • 
.. LCONBR [ Elementltst) RCONBR • 
= Element {COMMA Element} • 
= Constant [ RANGE Constant ] . 
= TIMES I SLASH I DIVSY I MODSY I ANDSY . 
= PLUS I MINUS I ORSY. 
= EQL I NEOIGRTIGEOILSSILEOIINSY. 
= {Statement } .. 
= BECOMES Designator COMMA Expression I 

CALL (Name 1 Designator) Paramlist I 
IFSY Expression StatSeQuence 
{ ELSIFSY Expression StatSequence} 
[ ELSESY StatSeQuence ] ENDSY I 

WiTHSY Designator StatSequence ENDSY I 
CASESY Expression 

{ OFSY Elementlist COLON StatSequence} 
[ ELSESY StatSeQuence] ENDSY I 

LOOPSY StatSeQuence ENDSY I 
WHILESY Expression StatSequence ENDSY I 
REPEATSY StatSeQuence UNTILSY Expression I 
FORSY I dent COMMA Expression TOSY Expression 
[ BYSY Constant] StatSequence ENDSY I 

RETURNSY [ LPARENT Expression RPARENT) I 
EXITSY. 

= Qualldent 
{ LBRACK Expression RBRACK I PERIOD !dent I ARROW} . 

= SimpleExpr [ ReiOp SimpleExpr] • 
• [PLUS I MINUS] Term { AddOp Term } • 
= Factor { MuiOp Factor} . 
• INTCON Value I 

CARDCON Value I 
INTCARCON Value I 
CHARCON Value I 

~ REALCON EntryAddr 1 /real value in heap/ 
-*STRINGCON EntryAddr Length I 

Designator [ Paramllst I Se!Constr ] I 
SetConstrl 
NOTSY Factor I 
LPARENT Expression RPARENT. 

• LPARENT [Expression {COMMA Expression}) RPARENT. 
,. NAMESY Nptr. 

4.3 Inter-pass File between Pass3 and Pass4 

Information on this file consists of a sequence of procedures which may contain 
nested procedures. The module structure of the compiled unit Is no longer visible. 
The code sequences of the code procedures are stored In the heap and not 
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contained on the file. 

Unit 
Procedure 

..l}t Nptr 
Block 
StatSequence 
Statement 

Variable 

Field Level 
Name 
Expression 
SimpleExpr 
Term 
Factor 

..,teonstant 
MuiOp 
AddOp 
ReiOp 

~ TypeStruct 
Value 
Paramlist 
Element 
Code Block 

= {Procedure} ENDBLOCK EOP. 
= PROCEDURESY Nptr [Block I CodeBiock) . 
= Pointer . 
= {Procedure} [ BEGINSY StatSequence] END BLOCK . 
= { Statement } . 
= BECOMES Variable COMMA Expression I 

CALL Variable Paramlist 1 
IFSY Expression StatSequence 
{ ELSIFSY Express_ion StatSequence} 
[ ELSESY StatSequence] ENDSY I 

FORSY Name COMMA Expression TOSY Expression 
[ BYSY Constant ] StatSequence ENDSY I 

CASESY Expression 
{ OFSY { Element } COLON StatSequence } 
[ ELSESY StatSequence] ENDSY I 

WHILESY Expression StatSequence ENDSY I 
REPEA TSY StatSequence UNTILSY Expression I 
LOOPSY StatSequence ENDSY I 
RETURNSY [ LPARENT Expression RPARENT ]I 
EXITSYI 
WITHSY Variable StatSequence ENDSY. 

"' [FIELD Reid Level PERIOD] Name 
{ LBRACK Expression RBRACK I PERIOD Name I ARROW}. 

• Number. 
.. NAMESY Nptr. 
= SimpleExpr [ ReiOp SimpleExpr ] . 
= [MINUS) Term { AddOp Term}. 
= Factor { Mul()p Factor} . 
.. Constant! 

Variable [ Paramlist] I 
LPARENT Expression RPARENT I 
NOTSY Factor . 

• ANYCON TypeStruct Value. 
= TIMES I SLASH I DIVSY I MODSY I ANDSY. 
• PLUS I MINUS I ORSY . 
"'EOLI NEOJGRTJGEQJLSSI LEQJ INSY. 
.. Pointer. 
=Number. 
= LPARENT [Expression {COMMA Expression } ] RPARENT. 
,. Constant . 
• CODESY ENDBLOCK. 

4.4 Inter-pass File between Pass4 and Lister 

Information on the file Is a sequence of double word blocks, which either are line 
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marks or error messages. The first word in a block Is a positive number for a line 
mark, and a negative number for an error message. 

Unit 
fnfoBiock 
Line Mark 
LineNum 
CodeAddr 
Error 
ErrNum 
ErrPos 

= { lnfoBiock} • 
= UneMark I Error . 
• LineNum CodeAddr . 
=Number. /positive value/ 
=Number. 
= ErrNum ErrPos . 
• Number. /negative value/ 
=Number. 
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Appendix 5 Syntax of the Reference File 

The terminal symbols of the reference file syntax correspond to the constants In type 
RefSymbol, declared In module MCP2Reference: 

RefSymbol • 
(refffleRS, endRS, 
moduleRS, procRS, typeRS, varRS . 
typerefRS. undefRS, 
fntegerRS, cardfnalRS, charRS, booleanRS. 
realRS, bftsetRS, proctypRS, 
wordRS, addressRS, processRS, 
subrRS, enumRS. setRS, pofnterRS, 
arrayRS, arrdynRS, recordRS , 
hfddenRS, openRS, 
constRS, fieldRS, 
absRS, fndRS, relRS) 

The information on the reference file is a sequence of bytes, packed into words as 
follows: 

word "' firstByte + secondByte • 400B 

Symbols and characters are represented in one byte by their ordinal value. Numbers 
are split into two bytes with byte1 • number DIV 4008 and byte2 • number MOD 

4008. 

Unit 
Ref File 
Module 
Head 
UneNum 
QbjectNum 
Name 
Block 
Procedure 
Type 
TypeNum 
TypeDesc 

TypeSize 
Min 

• Reffile Module. 
• REFFILERS Number. I ret file syntax ven;iOn I 
• MOOULERS Head Block EN DRS. 
• UneNum ObiectNum Name. 
.. Number . I refers to source text I 
.. Number . I refers to procedure table I 
• {Character} "OC" . 
• { Module 1 Procedure I Type I Variable} . 
• PROCRS Head Block ENDRS . 
• TYPERS TypeNum Name TypeDesc . 
• Number. 
• SUBRRS TypeSize Min Max TypeRef I 

ENUMRS TypeSize { Constant} EN DRS I 
SETRS TypeSize TypeRef I 
POINTERRS TypeSize TypeRef I 
ARRAYRS TypeSize TypeRef TypeRef J I index, element I 
ARRDYNRS TypeSize TypeRef J 
RECORDRS TypeS!ze {Field} ENDRS I 
HIDDENRS TypeSize I 
OPENRSTypeS!zeTypeRef. 

· • Number. I number of words I 
• Number. 
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Max 
TypeRef 

Constant 
Field 
Offset 
Variable 
AddrMode 
Address 

.. Number. 

., TYPEREFRS TypeNum I 
UNDEFRSI 
INTEGERRSJ 
CARDINALRS I 
CHARAS( 
BOOLEANRSI 
REALRSJ 
BITSETRSJ 
PROCTYPRSJ 
WORDRS( 
ADDRESSRS( 
PROCESSRS. 

.. CONSTRS Number Name. 
= AELDRS Offset Name TypeRef . 
.. Number. 
,. VARAS LlneNum AddrMode Address Name TypeRef. 
= ABSRS (INDRS J RELRS. 
=Number. 
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Appendix 6 Compiler Statistics 
The following tables show some statistics about the size of the Modula-2 compiler. 
For each separate module the number of source text lfnes (definition and 
implementation modules) and the memory space needed for code and global data is 
listed. 

MCBase 
MCPublic 
CompFil e 
Storage 
Wr iteStr i ngs 

Modula Base Part 

MCinit 
MCLookup 
Options 
FileNames 

Initialization 

MCP1Main 
MCPliO 
MCPlident 
MCP1Rea1s 
MCLookup 
MCSymDefs 
Options 
FileNames 

Pass1 

MCP2Main 
MCPZIO 
MCP2Ident 
MCP2Reference 
MCOperations 

Pass2 

5 modules 

4 modules 

8 modules 

5 modules 

267 lines 
234 lines 
401 lines 
233 lines 

42 lines 

1177 1 i nes 

276 1 ines 
218 1 ines 
139 1 ines 
375 lines 

1008 lines 

936 lines 
940 1 ines 
389 lines 
231 lines 
218 lines 

71 1 ines 
139 1 ines 
375 lines 

3299 lines 

1793 lines 
390 lines 
635 lines 
343 1 ines 
318 lines 

479 lines 

0.06 kword 
0.51 kword 
1. 01 kword 
0.24 kword 
0.13 kword 

1. 97 kword 

0.68 kword 
0. 32 kword 
0.23 kword 
0.65 lcword 

1.88 kword 

2.42 kword 
1. 59 kword 
0.87 kword 
0.34 kword 
0.32 kword 
0.02 kword 
0.23 kword 
0.65 kword 

6.46 kword 

3.59 kword 
0.46 kword 
0.88 kword 
0.47 kword 
0.49 kword 

5.91 kword 
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MCP3Main 
MCP3IO 
MCP3Ident 
MCOperations 

Pass3 

MCP4Main 
MCP4Global 
MCP4CodeSys 
MCP4AttributSys 
MCP4ExprSys 
MCP4Cal1Sys 
MCMnemonics 

Pass4 

MCSymFil e 
MCSymDefs 
Conversions 

SymFi 1 e 

MCLister 
Conversions 

Lister 

Modula 
Initialization 
Pass1 
Pass2 
Pass3 
Pass4 
SymFile 
Lister 

Modula-2 Compiler 

4 modules 

7 modules 

3 modules 

2 modules 

5 modules 
4 modules 
8 modules 
5 modules 
4 modules 
7 modules 
3 modules 
2 modules 

38 modules 

1692 lines 
382 lines 
495 lines 
318 lines 

2887 lines 

556 lines 
294 lines 

1037 lines 
655 lines 
660 lines 
529 lines 
101 lines 

3832 lines 

645 lines 
71 lines 

121 lines 

837 lines 

497 lines 
121 lines 

618 lines 

1177 lines 
1008 lines 
3299 lines 
3479 lines 
2887 lines 
3832 lines 

837 lines 
618 lines 

17137 lines 

3 .39 k:word 
0.44 kword 
0.58 kword 
0.49 kword 

4.92 k:word 

1.04 lcword 
0.41 kword 
3.04 kword 
1.07 kword 
1.19 kword 
1. 01 I< word 
0.02 kword 

7.80 kword 

0.90 kword 
0. 02 kword 
0.15 kword 

1.08 kword 

2.02 lcword 
0.15 lcword 

2.17 lcword 

1. 97 I< word 
1.88 kword 
6.46 lcword 
5.91 kwqrd 
4.92 kword 
7.80 kword 
1.08 kword 
2.17 k.word 

32.23 k.word 
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Glossary 
The glossary explains the specific meaning of some terms used In this text. 

Client 

A separate module which Imports objects specified In the Interface of an other 
separate module. 

Compilation 

Transformation of a program text (source text) written In a high-level programming 
language into a more primitive encoding, e.g. a machine language. 

Compilation Unit 

Source text unit accepted by a compiler for compilation. In Modula-2 this is a 
definition module, an Implementation module, or a separate module without export. 

Debugger 

A program which helps to analyze the state of execution of a program. The 
post-mortem debugger on Lilith operates on a memory dump which Is saved onto a 
file at the moment of a program crash. Structural information about the objects used 
in a program program is read from reference files. 

Definition Module 

Interface part of a separate module in Modula·2. It contains all declarations which 
are needed for a complete specification of the interface of a module. 

Export 

Specification of objects defined within a module which are viSible and may be used 
outside the module. 

Implementation Module 

Implementation part of 8 separate module in Modula-2. It complements the 
corresponding definition module, i.e. it is the actual encoding the specified Interface. 
It contains local obJects and statements which need not be known to the clients of 
the module. 

Import 

Specification of objects defined outside a module which may be referenced Inside 
the module. 

Independent Compilation 

CompUatlon of a program split Into several separate program parts without checking 
of the references among the separate parts. 
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Interface 

A collection of information about objects of a separately compiled unit. It ts a 
description of those objects which may be referenced by other separate units. 

Inter-pass File 

Work file of the Modula-2 compiler on Lilith which contains the symbol sequence 
passed between subsequent compiler passes. 

Linker-loade r 

A component of the operating system Medos-2 on Lilith which loads the code of the 
separate modules of a program, checks the module keys, and establishes references 
among the separate modules. 

local Module 

A nested unit within a separate module which Is used for internal modularization. 

Main Module 

A separate module which is called for program execution. After loading of the code 
of this module and all directly or indirectly imported modules, a program is started by 
execution of the code sequence of the main module. 

Module 

1) A tool provided by high-level programming languages for structuring large 
programs and for data abstractions. A module combines objects which logically 
belong together and allows to control the use of objects across the module 
boundaries explicitly. 

2) A syntactical unit provided by the programming language Modula-2. VISibility 
control of objects is achieved by specification In import and export lists. 

3) (As generally used in the text, meaning) a separate module. 

Module Key 

A time stamp which Is assigned to 8 separate module by the Modula-2 compiler on 
Lilith. II allows correct identification of a compiled version of the separate module. 

Name Entry 

A representation of a named object in the symbol table of the Modula·2 complier on 
Lilith. 

Object File 

File containing the code of a separate module. It Is generated by the Modula-2 
compiler on Lilith upon compilation of an Implementation module or a module 
without export. It is written In a format as It Is accepted by the lfnklng·loader of the 
operating system Medos·2. 
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Pass 

A compiler part which performs one or more compilation steps on the whole 
program part to be compiled. A pass processes a representation of a compilation 
unit and analyzes and transforms the processed information. The output of a pass Is 
possibly processed by a subsequent pass. The Modula-2 compiler on Lilith is 
organized as multi-pass compiler. 

Program 

A main module and a collection of separate modules which are directly of indirectly 
imported by this main module. 

Reference File 

File containing structural information about the objects declared in a separate 
module. It is generated by the Modula-2 compiler and used by the post-mortem 
debugger on Lilith. 

Scope 

A validity and visibility range for objects, usually constituted by the boundaries of 
modules and procedures. The identifiers of the objects must be unique within a 
scope. 

Separate Compilation 

Compilation of a program split into several separate program parts with full type- and 
parameter-checking among the separate parts upon compilation. 

Separate Module 

A unit which constitutes a separately compiled part of a Modula-2 program. A 
separate module which exports some of its objects is split into a definition and an 
implementation module. (A separate module is often simply called module in the 
text.) 

Spelling Index 

Internal representation of an identifier in the Modula-2 compiler on Lilith. It Is a 
reference to the identifier table where the actual character representation of the 
Identifier is stored. 

Structure Entry 

A representation of a type structure In the symbol table of the Modula·2 compiler on 
Lilith. 
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Symbol File 

Symbolic interface description of a separate module. It is generated by the Modula-2 
compiler on Lilith upon compilation of a definition module and considered as the 
only valid representation of the definition module for subsequent compilations of the 
corresponding implementation module and client modules. 

Symbol Table 

A compiler internal representation of the objects declared In a compilation unit. The 
symbol table of the Modula-2 compiler on Lilith is organized as a large netwoli< of 
name and structure entries which are stored in the heap of the memory. 
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