

X68000 Cross Assembler

User's Manual

Brian R. Anderson
2977 East 56th Avenue
Vancouver, B.C. V5SS 2A2

Table of Contents

Introductionveceececss cee e Cesecasanas
System Requirements ceeceessseasssennana
M6B8000 SYNta@X eeseeccesccsceas ceecaasen cecasen
Instructions ..eeeece.. cesenes ceeeenanaas
Addressing Modes Ceectceseacce e
Assembler Directives ceecsreenns
Expression Evaluation ...ceeeeeces, creaen
Program Layoutcecceecceceersocsnoseass oo
OperatioOn +.ceeseecssscoscsnscossnansscsss ceeens .
Output Files ...t eiieeoencacansncannss ceeana .
Listing File ..cieeeecns Ceceesecseansanaan
S-record File ..viiieiiieennnennans ceeseas
Manual Linking .eeeeeeeeeccesseoscncaasoscaoanans 10
Tracking Global Data ..c.ieveernnneneeness 10
Tracking SubroutinNesSceeciecccscsanss 11
Link Example ceesesssesenecenues ee. 12
Example ProgramsS ..ceeeesecsscnocscccssasos ceees 21

LCOO-JOAOTDNHWNEF P

X68000 Cross Assembler -- User's Manual

Introduction

X68000 is a two pass cross assembler for the Motorola
M68000 microprocessor. It accepts standard Motorola syntax (with
some limitations noted below), and produces a formatted program
listing file, and an object file consisting of standard Motorola
S-records. The S-record format is fully explained on page 9.

System Requirements

One or more disk drives, and either CP/M~-80 with 64K Bytes
of memory, or MS-DOS with 128K Bytes of memory, are required to
operate the assembler.

Software Supplied
The X68000 package consists of the following files:

* X68000.COM/X68000.EXE - The assembler progranm. Requires
OPCODE.DAT to operate.

* OPCODE.DAT - A data file used to initialize the mnemonic lookup
table for the assembler. This is NOT a text file. The data is
stored in compact binary format. X68000 will search for this
file first on the currently logged drive, then on drive A, and
finally on drive B.

With the standard configuration, there is room in the symbol
table for 500 identifiers. Assembly speed is approximately
200-250 lines per minute.

Copyright
Copyright (c) 1985 by Brian R. Anderson

This software may be freely copied for personal, non-
commercial use provided only that all copyright notices remain
intact.

Acknowledgement

The assembler was developed in the CP/M environment using
the Modula-2 compiler from Hochstrasser Computing AG
(Switzerland), and later ported to the MS-DOS environment using
the Modula~2 compiler from LogiTech (Palo Alto, California).

X68000 Cross Assembler -- User's Manual

M68000 Syntax

This user's manual does NOT fully cover the M68000 syntax,
but only enough of it to explain how the assembler operates. It
is assumed that the reader has a copy of one of the following
Motorola reference manuals (or other appropriate references):

* 16-BIT MICROPROCESSOR USER'S MANUAL
{3rd edition) MC68000UM(AD3)

* M68000 16/32-BIT MICROPROCESSOR PROGRAMMER'S REFERENCE MANUAL
(4th edition) M68000UM(AD4)

The standard syntax as outlined in these manuals is adhered
to in most instances. However, there are a few limitations,
which are explained in later sections of this user's manual.

There are three formats used for the instructions:
(The label is optional in all cases.)

Operand is implied or inherent to the instruction.
<label> <opcode>
Eg.: RTS ;Return from subroutine

Single operand.
<label> <opcode> <operand>
Eg.: JSR (A2) +A2 points to subroutine

Two operands. Result ends up in second operand.
<label> <opcode> {source operand>,<destination operand>
Eg.: ADD #4,D0 iAdd 4 to data register 0

Labels may consist of any combination of up to eight
letters, numbers, and the underline character; labels must not
start with a number. Upper and lower case letters are

equivalent. This assembler does not expect a colon after the
label. Some examples of valid and invalid labels follow:
VALID: start L23 under VAL23

INVALID: 62HOPE error: much tooc long

X68000 Cross Assembler -~ User's Manual

-Instructions Supported:

Although all Motorola mnemonics (except those specific to
the 68010/68020) are supported, a few notes are needed to explain
the peculiarities of X68000. Because the 68000 has such a huge
instruction set, there is some overlap =~-- that is, there is
sometimes more than one correct way to represent an operation.
For example, there are three ways to add one to a data register:
ADD #1,DO0; ADDI #1,DO0; ADDQ #1,DO. Some assemblers will
substitute one form for another =-- usually choosing a more
efficient instruction. With this assembler, you get the mode you
ask for -- period!

Motorola provides special instructions for address
manipulation to ensure that the programmer is well aware when
addresses are being changed. However, many 68000 assemblers will
substitute ADDA (add to address) automatically even though ADD is
specified. X68000 does not make this substitution, and for
example, will flag ADD #4,A2 as an error; ADDA #4,A2 must be used
instead.

DBRA (Decrement, Branch Always) may be used as a synonym for
the less intuitive DBF (Decrement, Branch False). The DBcc
looping instructions usually combine three operations: Test a
condition; Decrement a register; If the register is not equal
to negative one, then branch. The DBRA/DBF effectively omits the
first of these steps. This is the only instruction for which a
synonym exists.

The M68000 requires that all instructions be aligned to WORD
boundaries. X68000 ensures this by forcing all instructions to
the next highest even address (i.e., to WORD boundaries). Since
all instructions require an even number of bytes, this feature
would usually only make a difference if you tried to originate
code (see page 5) at an odd address or if code follows directly
after a data declaration reserving an odd number of bytes.

X68000 Cross Assembler

User's Manual

-Addressing Modes Supported:

The majority of instructions use the same 12 addressing
modes (or a subset of these) to calculate the effective address

of the operand(s).

The Branch and Decrement/Branch group of

instructions are unique in that they use only the relative
in which case the assembler calculates the
if given the absolute destination address

addressing mode;
relative offset
(usually specified as a label).

The special modes

are used in only a very few instructions.

MODE

Data Register Direct:

Address
Address
Address
Address
Address
Address

Register
Register
Register
Register
Register
Register

Absolute Word:

Absolute Long

Direct:

Indirect:

Indirect
Indirect
Indirect
Indirect

(default):

with Postincrement:
with Predecrement:
with Displacement:
with Displacement and Index:

Program Counter with Displacement:

Program Counter with Displacement and Index:
Relative:
Condition Code Register:
Status Register:
User Stack Pointer:

* n is the register number:

* SP is a synonym for A7.

1..7

Eg.: MOVEM D1/D4-D6,- (SP)

(CCR,

SR, USP)

SYNTAX

Dn
An
(An)
(An) +
= (An)
d (An)
d(An,Xi)
XXXX . W

XKXXXXXXX.L

d (PC)

d (PC,X1)
<label>
CCR
SR
USP

* Branches and Absolute Jumps will default to their long form

unless the short form is specified.
a .S suffix to the opcode.

Eg.: BRA.S <label>

* Modes requiring a displacement MUST specify same,
displacement is zero.

Eg.:

MOVE #300,0(A0,D2)

This is done by applying

even if the

* Absolute mode will default to the long form unless word is
specified.
alternatives for specifying JMP/JSR in the word range.)

Eg.:

Eg.:

JSR.S <label> or JIMP <Klabel>.W

MOVE DO0,$4000.W

(This

allows

two

(the first is preferred)

* The current value of the program counter is indicated by *.
This is often used to invoke the Program Counter relative
addressing mode for JIMP/JSR instructions.

Eg.:

JMP

DEST-*-2(PC)

;The '-2'

;jJump to DEST using PC relative.
is required because

;the M68000 increments the PC
;twice before it calculates the

snew value for the PC.

X68000 Cross Assembler -- User's Manual

-Assembler Directives Supported:

DIRECTIVE SYNTAX
Originate Code or Data: ORG
Equate a Symbol to a Value: EQU
Force Program Counter to Word Boundary: EVEN
Define Constant, Byte: DC.B
Define Constant, Word (default): DC.W
Define Constant, Long: DC.L
Define Storage: DS
End of Source Code: END

* All values used in assembler directives must be defined before
they are used. It is most usual that the arguments of the
directives are constants.

* DC.W aligns to the next word boundary. DC.L aligns to the next
long word boundary.

* DC may be used to store constant strings - maximum 10
characters per directive/line, 1in addition to 1its wusual
function (to reserve memory for variables). For longer
strings, multiple DC directives may be used. When using this
feature, DC, DC.B, DC.W, DC.L are all equivalent.

Eg.:

MSG DC.B 'This is a ' ;Maximum 10 characters per DC!
DC.W 'very long '
DC.L 'message.’

* The form <label> DC.B 10,20,30 is not supported. You must use:
<label> DC.B 10
DC.B 20
DC.B 30

* DS always defines the storage in bytes, and leave the reserved
memory uninitialized.
Eg.:
BUFFER DS 80 ;Reserve 80 bytes for the BUFFER.

* There must be at least one <CR><LF> after the END pseudo-op.

The assembler does not produce relocatable code, and
therefore does not support the directives associated with
relocation and/or linking. However, the 68000 instruction set
makes it very easy to produce position independent code. By
using no absolute mode instructions (program counter relative is
available to most instructions), your resulting code can be
relocated and linked without the use of a linking loader. More
on this later.

X68000 Cross Assembler -- User's Manual

-ExXpression Evaluation:

As mentioned above, limited string evaluation (up to ten
characters) is supported for the Define Constant assembler
directive. In addition, single quoted literals may be used to
insert the ASCII hex value 1into equate statements or
into instructions.

Eg.: CMPI #'0',D0 ;compares DO with $30 ('0' = $30 in ASCII)

Limited arithmetic expression evaluation is also supported
for both assembler directives and instructions. Decimal
constants in the range of +/- 65535, Hexadecimal constants in the
range of O-$FFFFFFFF (32 bits), and Binary constants in the range
of 0-%1111111111111111 (16 bits) are allowed. Hexadecimal and
binary constants are sign-extended to 32 bits (sign extension can
be defeated by including a leading zero -- Eg.: $0FF). Octal
constants are not supported. The only operations that are
allowed in expressions are addition and subtraction. Expressions
are evaluated left-to-right, and must not contain parentheses or
spaces. Although there is no limit to the number of terms in an
expression, the total 1length of operands is limited to 19

characters. (Unsupported operations =-- multiplication, division,
etc., -- will be flagged as an error, usually as an Undefined
Symbol). Eg.: ADDI #SIZE-4,DO

-Source Program Layout:

* Labels must appear at the left margin.

* Op~Codes must be separated from labels (or left margin, if the
label is absent) by at least one tab or space. It is best to

set your editor to map tabs into spaces.

* Operand{s) must be separated from op-codes by at least one tab
or space.

* Operands (if two are present) must be separated by a comma.

* No spaces may appear within labels, op-codes, or operands.

* Identifiers (labels) must not start with a digit.

* All lower case characters are mapped to upper case, unless they
appear within single quotes. The single quote itself must be
represented by its hex value ($27), and cannot be part of a
string.

* The beginning of a comment is indicated by a semicolon
(anywhere on the line) or an asterisk (on the left margin

only). The balance of such lines is ignored.

* See example programs starting on page 21.

X68000 Cross Assembler -- User's Manual

Operation

The data file OPCODE.DAT must be present somewhere on the
system for X68000 to operate. X68000.COM/X68000.EXE and the
input file (i.e., source file) may be on any drive. The output
files (Listing and S-record) will always be written to the same
drive that the input file is on. A good arrangement is to have
your editor along with X68000.COM/X68000.EXE and OPCODE.DAT on
the A: drive, with the assembly source files on the B: drive.

Operation of the assembler is very straight forward (the
hard part is creating a syntactically correct source program).
Invoke the assembler by typing X68000, optionally followed by a
source program filename. If you do not enter a filename, the
assembler will prompt you for one.

The source program filename must adhere to normal operating
system (CP/M or MS-DOS) conventions, and is usually of type
extension .ASM; this will be assumed if you omit the dot
(separator) and the filetype.

To assemble a file called B:TEST.ASM from the system prompt:
(Operator input is underlined)

A>X68000 B:TESTKCR>

or

A>X68000<CR>

Enter Source Filename: B:TEST<KCR>

After a short delay, the following messages will appear on
the console screen (assuming that B:TEST.ASM had no errors):

68000 Cross Assembler
Copyright (c¢) 1985 by Brian R. Anderson

Assembling B:TEST.ASM

[y

PASS
PASS 2

-=--=> END OF ASSEMBLY
~--=> (0 ASSEMBLY ERROR(S).

X68000 Cross Assembler -- User's Manual

The various messages will appear in sequence as the two
passes are executed. Most of the error checking is done on the
second pass, but some errors will be detected in both passes.
Error messages will be output to the console in the following
form:

23 LOOP JMP D3 :Repeat input section

-

This addressing mode not allowed here.

The number (23) indicates which line of the source file that
the error was found on, and is followed by the line as it
appeared in the file.

In most instances, an arrow (7) will point to the location
of the error. Although the error detection is very good (all
errors will be reported), the verbal error messages will

sometimes need interpreting, especially if totally incorrect
syntax 1s encountered.

Since X68000 has no way of knowing how tab stops have been
set up on your editor and video terminal, the error arrow (7)
will not be positioned correctly if tabs are included in your
68000 source code. For accurate positioning of the error arrow,
you should set your editor to map tabs into spaces.

After an error, assembly will be suspended until any key on
the conscle is struck; this allows the programmer to make note of
the error before continuing. Although the listing file will
contain a tally of the number of errors found, the errors will
not be pointed out. The only detailed error information comes
from the error messages output to the console.

The assembler will abort with an error message under three
conditions: no source file; out of room in the symbol table; too
many errors encountered. There is room for 500 symbols, and up
to 500 errors are allowed before termination. (The operator may
abort after any error by typing Control-C.)

X68000 Cross Assembler -~ User's Manual

Output File Format

The listing file contains everything that was in the source
file (formatted into pages), along with the object code generated
for each line of source code. Also included in the listing file
is a sorted symbol table showing all identifiers defined by the
programmer, along with their values. To get a print-out of the
listing file, use your operating system utility (PIP, COPY, or
similar) to send the file to the printer.

The S-record file may be used to upload the object code to
development hardware or EPROM programmers, etc.. The format
adheres to Motorola standards, as outlined below.

Three types of records are used: S0 (header), S2
{code/data), S8 (trailer). The S0 record contains a 2-byte
address (always zero); the S2 and S8 records contain 3-byte
addresses (S8 address is always zero, too). The S2 record is the
most important, and will be explained in detail. The other
records have a substantially similar format.

The S2 records provide all the address, code, and data
information about the source code. Each record is autonomous in
that it contains both the code or data along with the memory
address where that code or data is to reside. Each record is
also checked for errors by way of count and checksum fields.

Each S-record consists of up to 5 fields:

* Sn - Indicates the type of field (where n is 0 - 9).

* Count - Byte count; includes address bytes and checksum,
but excludes S-type & count.

* Address ~ Starting address of this line of code or data.
* Code/Data - 16 bytes of program code or data. Contains
source filename for S0 record; absent for

58 record.

* Checksum - Least significant byte of 1's complement of
the sum of count, address, and code/data bytes.

X68000 Cross Assembler -- User's Manual

Manual Linking

Linking consists of joining two or more separately assembled
modules together to form one executable program. To make manual
linking practical, it is important to make all modules position
independent. That means that they can be loaded at any address
in memory, and they will still execute properly. 1In practical
terms, that means you must avoid the use of absolute address
references in your code modules.

Although absolute address references prevent complete
position independence, they are impossible to avoid altogether.
A program may be made of several modules, each with one or more
subroutines. When the main program, or any subroutine, calls a
subroutine that is outside its own module (a very common
situationt), 1t must know the absolute address of that
subroutine. In the case of global data (data that is accessible
by all parts of the program), absolute addresses are also needed.
{However, all local references can easily be made position
independent through the use of relative address instructions or a
stack frame. See figure 10 (page 22) for an example of relative
addressing.)

An assembler and linker often team up to provide these cross
references to all parts of a large program. The programmer
specifies all objects (data and subroutines) that are to be
accessed from outside a module, as GLOBAL. At assembly time,
additional information is included with the assembled object
file. That information includes the name of all GLOBAL objects,
and their relative position within that module. At link time,
the linker ccllects this information from all modules, and
resolves accesses to GLOBAL information. The code produced by
X68000 DOES NOT include relocation information, so linking must
be done manually.

-Tracking Global Data:

To manually perform linking, the first step is to choose one
area in memory where all global data is to be located. Global
data should be kept to a minimum anyway, so keeping track of this
area should be no real burden. Each time you need a new global
data item, write down its name, size, and relative position (in
bytes) within the global data area. When referring to these
absolute addresses, simply use the starting address plus the
relative position.

Eg.:
GLODAT EQU $0200 ;Global data starts here
*

*
MOVE DO, GLODAT+4 :Store at 2nd Long Word
;of Global Data area

10

X68000 Cross Assembler -- User's Manual

-Tracking Subroutines:

Manually tracking subroutines is a little more difficult, as
it involves some calculation of addresses, and some reassembly of
modules. The first assembly is done with all modules (except
possibly the main program module) originated at zero, and with
equate statements for each external global subroutine name
showing the address of that subroutine as zero. The assembler
will calculate the starting address of each internal subroutine
(in fact, of each instruction), as well as the total length of
all modules. Record all of this information.

Now, you have a few calculations to do: figure out the total
memory requirements, and determine the new starting address for
each module by stacking them end to end (this is called a Link
Map). Based on the actual starting address of each module and
the relative address of subroutines within that module, calculate
the absolute address of each subroutine. Next, change all EQU
statements that refer to global subroutines to their real
addresses; and change all ORG statements to reflect their
position within the stack of modules that you have created.
Finally, reassemble all modules.

Linking is now just a matter of concatenating all of the S-
record files (with PIP or COPY) and then eliminating extraneous
S0 and S8 records (leaving only the first S0 record, the §2
records from all modules, and the last S8 record). The S-record
file is then ready to upload to a PROM programmer. All sections
will automatically be loaded to their correct areas in memory due
to the nature of S-records (see page 9 for more details on S§-
records) .

11

X68000 Cross Assembler -- User's Manual

The following simple example illustrates manual linking of
three modules. The first module consists of a main progranm,
while the others each consist of 2 subroutines. Four items of
global data are shared among the modules.

The results of the initial assembly are shown in figures 1
through 3 (pp 13-15). The main module declares four data items.
Notice that their offsets reflect the size of the data (one is
LONG (4 bytes), while the others are WORD (2 bytes)). It is up
to the programmer to calculate these offsets.

Information derived from the first assembly listings:

MAIN ends at $1038. (BIG will start here)

DOUBA subroutine starts at beginning of BIG.

TRIPB subroutine starts $14 bytes beyond the beginning of BIG.
BIG ends at $30. (SMALL will start at $1038+$30 --> $1068)
HALFC subroutine starts at beginning of SMALL.

THIRDD subroutine starts $1C bytes beyond the beginning of
SMALL.

* SMALL ends at $38. (This information is not needed, because
SMALL is the last module)

* A o ¥ * X

Proposed Link Map:
(BIG and SMALL stacked on top of MAIN.)

$1000 ==mmm—mmm—m e
MAIN
$1038 =—=—-—=mm——mmmmmmee e -
DOUBA = $1038+0 --> $1038
BIG
TRIPB = $1038+$14 —--> $104C
$1068 ~—=mm-=mm—mmm—emm e -
HALFC = $1068+0 =-=> $1068
SMALL
THIRDD = $1068+$1C --> $1084
$10A0 ===mm=mmmmm e

The addresses of the subroutines must now be substituted for
the zeros in the EQU statements that refer to them in MAIN.
Also, the new ORG values indicating the start of modules BIG and
SMALL must be substituted for the zeros initially used. Figures
4 through 6 (pp 16-18) show the final listings with all external
address references resolved.

Figure 7 (page 19) shows the concatenated S-records, while
figure 8 (page 19) shows the same file with the extra S0/S8
records removed. The S-record in figure 8 is now ready for
uploading.

12

X68000 Cross Assembler

500100
000104
000104
000108

001000

001006
00100C

001012
001018

Q0101E
001024

001024
001030

201036
001038

)
——

MAIN

00000000
(oo
0000
0000
00000000
00000000
40000000
00000006

203C00000100

230000000100
4EBF00000000

330000000104
4EBF00000000

130000000108
4EBF00000000

33€000000108
4EBF00000000

AE40

END OF ASSEMBLY

User's Manual

13032300030 tRitaintaiisirinititieitibijoteteiritsis

- e e

[I = i o

D

DOUBA
TRIPR
HALFC

THIRDD

MAIN
¥

{ ASSEMBLY ERROR(S).

Main

Manual Link Examole

JRG
De.L
OC.W
DC.¥
OC.¥
Eay
EQY
Equ
EGY

ORG
MOVE.L

HOVE.L
J5R

HOVE
J5R

MOVE
JSR

MOVE
J5R

TRAP
ENC

Progras
of

$100
0

0

0

0
$0000
$0000
$0000
$0000

#1000
#$100,D0

Do, A
pouBA

D0.EB
TRIPB

bo,C
HALFC

0.
THIRDD

$0

I 31 Svabolic Reference Table t % ¢

¢ 00000100
: (0000108
: 00001000

Main program module.
and offsets calculated.

E
DOUBA
THIRDD

s 00000104 1 €

: 00000600 ¢ HALFC
+ 00000000 | TRIPB
Figure 1

BERRRERRERRR SRR RR RS bR R IR ARsReReRtsasasssnsaeingy

sblobal Data Area
i0ffset = 0

10¢4set = 4
10ffset = &

i0tiset = 8
1External Subroutine
tExternal Subroutine
sExternal Subroutine
sExternal Subroutine

1A doubled

:B trippled

;L halved

:D Divided by 3

:Return to DOS

40000106
00000000

1 00000000

Global data declared,

Since addresses of

external subroutines are unknown, zeros are
inserted in the eguate statements that will
eventually contain their absolute addresses.

13

X68000 Cross Assembler

User's Manual

12000000 tieatestiiittiniRisirtatstiacsitintsnl

] Module used by Main

] No overflom checking in subroutines
AR iRt it aiisssiniatinististtisasiss

00000100 GLOBDAT EQU $100
0rRG 0
000000 3F00 DOUBA MOVE D0,-(SP}
000002 203900000100 MOVE.L GLOBDAT+0,D0
(00008 D080 ADD.L DO,DO
000004 230000000100 MOVE.L DO.BLOBDAT+0
000010 301F MOVE {SF}+,D0
000012 4E7S RTS
1
000014 4BATCOOC TRIFR MOVEM DO/DI,-{5P}
000018 303900000104 MOVE GLOBDAT+4,D0
00001E 3200 MOVE DO,DI
000020 DO4O ADD 00,00
000022 D04 ADD D1, De
000024 330000000104 MOVE DO,GLOBDAT+4
000028 4C9F0003 MOVEM (SP)+,D0/D1
00002E 4E7% RTE
b
200030 END
---> END DF ASSEMBLY
~-==» 0 ASSEMBLY ERROR(S),
¥ 3t Svymbolic Reference Table t ¥ 8
DOUBA ;00000000 1 BLOBDAT & 00000100 | TRIPR
Figure 2

BIG module
subroutines. Start of Global
specified with EQU statement.
data 1s offset from this.

14

1Start of Data

;Push register
16et Global Data
iDouble it

:Put it back
:Restore register

;5ave registers
shet Global Data
sMake a copy
;Double it

iTriple

sPut it back
{Restore registers

: 00000014

containing DOUBA and TRIPB

Data Area 1is
All global

X68000 Cross Assembler -- User's Manual

SRR ie ittt eRiatiteivitttitiseistiti
] Subroutines for Main
RO R Rt iR tiiRiniiessaifesissiefssis

60000100 GLOBDAT EGU $100
0ORG 0

000000 2FOC HALFC ~ MOVE.L DO,-(5P} tPush
000002 303900000106 MOVE.W 6LOBDAT+6,D0 ;bet Global Data
000008 8OFCO002 DIve 2,00 tHalt
00000C O02BOFFFFFFFF ANDI.L W$FFFF, DO :Dump reaainder
000012 33C000000106 MOVE.W DO,GLOBDAT+A :Put back data
000018 201F HOVE.L (SP)+.DO iPull
000Q1A 4E7S RTE

s
000010 2F00 THIRDD MOVE.L DO,-(5P) :Push
D0001E 203900000108 MOVE.® GLOBDAT+B.DG ;Get data
000024 BOFLO0QZ DIVL #3,D0 iThird
000028 OQ2BOFFFFFFFF ANDILL 8S$FFFF,DO sDusp resainder
000026 330000000108 MOVE.W DO,GLOBDAT+8 :Put back data
000034 201F MOVE.L (SP)+.D0 tFull
000036 4E7S RTS

t
000038 END

---+ END OF AGSEMBLY
---} O ASSEMBLY ERROR(S}.

£+t Svebolic Reference Table ¢ 3 ¢

BLOBDAT & 00000100 1 HALFC : 00000000 | THIRDD & 0000001C

Figure 3

SMALL module with HALFC and THIRDD subroutines.

15

X68000 Cross Assembler --

200100
000104
000106
000108

061000

001006
00100C

001012
001018

00101E
001024

001924
501030

201038
001038

A
]
HAIN

00000000
0000
0000
0000
00001038
0000104C
00001068
00001084

203C00000100

23C000000100
4EBFC0001038

33C000000104
4EB90000104C

33C000000106
4EEF00001068

330000000108
4ERT00001084

4E40

END OF ASSEMBLY
- ASSEMBLY ERROR{S}.

User's Manual

93 PR Rt iiiiisiisisisisieiiititsioieiasiiiy]

H
H
1
¥
1
|}

[ae B v s =

D

bousa
TRIPB
HALFC

THIRDD

NAIN

Main Frooras

Manual Link Examole

ORE
DC.L
DC.W
DC.K
DC.W
Equ
Eau
34]]
Eau

ORG
MOVE.L

NOVE.L
J5R

MOVE
J5K

HOVE
ISR

MOVE
J5R

TRAP
END

ot

$100
0

0

0

0
$1038
$104C
$1068
$1084

$1000
#$100.D0

Do.A
bouBA

Do, B
TRIFR

g,C
HALFC

Do,
THIRDD

$0

£ 11t Sysbolic Reference Table ¢ X 8

: 00000100
00000108
1 00001000

B : 00000104
bouBA : 00001038
THIRDD ¢ 00001084

Figure 4

HALFC
TRIPB

BERRSRRERERRRRLR AR RN RRRRRRRRRRRRRRAIRRLSLNININY

tblobal Data Area
(0ffset = 0

i0ffset = 4

(0tfset = 6

i0ffset = 8
:External Subroutine
sExternal Subroutine
tExternal Subroutine
sExternal Subroutine

1A doubled

:B trippled

:L halved

:D Divided by 3

iReturn to DOS

00000106
00001048
0000104C

MAIN module must be altered and reassembled,

due to external

Addresses calculated earlier

subroutine references.

(see page 12),

have been inserted into the EQU references.

16

X68000 Cross Assembler -- User's Manual

iR et eaasiesiotisReitotesiestaiistaitnsesii
3 Module used by Main

L4 No overflow checking in subroutines

AR PR Rt ReeRs it tiiiesiiiisbiitntistiafisis)

00000100 GLOBDAT EQU $100 :5tart of Data
0RE $1038

001038 3FoC DOUBA MOVE DO,-(SP) ;Push register
DO10TA 203700000100 MOVE,L GLOBDAT+0,D¢ ;Get Global Data
001040 DOBO ADD.L DO,D0 :Double it
001042 23CO00000100 MOVE.L DO,6LOBDAT+0 :Put it back
001048 301F MOVE (SP)+,D0 iRestore register
201048 4E7S RTS

X
00104C 4BATLOOD TRIFB MOVEM DO/D1,-(SF) ;Save registers
001050 303900000104 MOVE GLOBDAT+4,00 :bet Global Data
001056 3200 MOVE D0.DI sMake a copy
001058 Do40 ADD Do, bo :Double it
001054 DOM ADD DL.DO iTriple
00105C 33C000000104 MOVE D0,6LOBDAT+4 :Put it back
001062 4C9F0003 MOVEM (SP)+,D0O/D4 iRestore registers
001066 4E7S RTS

t
001068 END

---» END OF ASSEMBLY
--=» O ASSEMBLY ERROR{(S).

£+ 3% Svabolic Reference Table 11 8
DOUBA : 00001038 ¢ GLOBDAT & 00000100 | TRIFB : 0000104C
Figure 5

BIG module with ORG changed to coincide with
the Link Map.

17

X68000 Cross Assembler

~- User's Manual

123003220 R 0000030003308 2300300330¢003800080041

H Subr

outines for Main

1332182223203 0R0000000082 0000300308800 00388kR3)]

00000100 GLOBDAT EAY $100
ORG $1068
001068 2FOG HALFC ~ MOVE.L DO,-{5F} tPush
001064 203900000106 MOVE.W GLOBDAT+6.DC ;bet blobal Data

001070 BOFCO002
001074 0ZBOFFFFFFFF

pIve #2,00

ANDI

L #$FFFF,D0

1Halt
:Dusp reaainder

001074 I3C000000104 MOVE.W DO,BLOBDAT+S :Put back data
001080 201F MOVE.L (SP)+,D0 tPull
001082 4E73 RTS
4
001084 2F00 THIRDD MOVE.L DO,-(S5P) +Push
001086 302900000108 MOVE.W GLOBDAT+8,DO ;bet data
00108C 80FCO00Z DIV #3,D0 tThird
001090 02B0FFFFFFFF ANDI,L #8FFFF, DO ;Duep remainder

001094 33C000000108 MOVE.W DO,GLOBDAT+8 ;Put back data
00109C 201F MOVE.L (SF}+,D0 iPull
00109E 4E73 RTS

001040

---> END OF AGSEMBLY
---+ (1 AGSEMBLY ERROR(S).

END

1 3t Sysbolic Reference Table 3 % 8

GLOBDAT @ 00000100 | HALFC : 00001068 | THIRDD @ 00001084

Figure 6

SMALL module with ORG changed to coincide
with the Link Map.

18

X68000 Cross Assembler -- User's Manual

S00B00004D41494E2E41534DCC
§20E00010000000000000000000000F0
5214001000203C0000010023C0000001004EBF000093
5214001010103833C0000001 044EB90000104C33C035
§214001020000001064EB70000106833C00000010837
§20C0010304EB7000010844E408A

5804000000FC

S00A00004249472E41534D14
§20C0010383F0020390000010012
5214001040D08023C000000100301F4ETS4BATCO00AS
5§2140010503039000001043200D040004133C0000007
520£00106001044C9F 00034E75CD

5804000000FC

500C0000534D414CAC2E41534D6R
§20C0010682F00303900000106DC
521400107080FC000202B0F FFFFFFFIZC00000010673
§214001080201F4E732F00303900000108BOFCO00I3Y
52140010900280FFFFFFFFIICO00000108201F4ETSCF
SBO40GO000OFC

Figure 7

Concatenated S-record file before extra
S-records are removed.

500B00004D41494E2E41534DC0
S20E00010000000000000000000000F 0
5§214001000203C0000010023C0000001 004EBR000093
£214001010103BIICO000001044ERI0000104C33COI5
5214001020000001064EB90000106833C0000001083F
520C0010304E89000010B44E408A
52000010383F0020390000010012
5214001040D08023C000000100301F4E7S4BATCO00ARL
§21400105030390000010432000040004133C0000007
520C00106001044C9F00034E75CD
§20C0010482F00303900000106DC
§21400107080FCOO020280FFFFFFFFIZIL00000010675
3214001080201F4E752F 003039000001 0BB0FCO0033S
E21400109002B0FFFFFFFFIIC000000108201F4ETSCF
SB04000000FC

Figure 8

Final S-record files. Ready for uploading to
a PROM programmer or evaluation circuit.

19

X68000 Cross Assembler -- User's Manual

Although this is a simplistic example, the same method can

be used to manually link virtually any group of modules. The
main points to remember:

*

Avoid absolute references. Use relative branches for all
internal jumps. Use PC relative addressing (or a stack frame)
for access to local variables. Absolute references will be
required only for access to global data and external
subroutines.

Keep all global data together, and calculate the offset of each
based on their size and position. The correct place to declare
global data is in the main program module.

ORG the main program at whatever location you wish.

Provide EQU statements to specify the starting address of all
external subroutines. These are initially set to zero.

ORG all modules (with the possible exception of main) at zero.
Assemble all modules.

Create a Link Map by stacking all modules on top of the main
program.

Calculate the starting addresses of all subroutines based on
their position in the Link Map, and their relative offset from
the beginning of their own module. The necessary information
regarding these addresses is obtained from the first assembly
listings.

Substitute the absolute address of all external subroutines
(calculated with the aid of the Link Map) in the EQU statements
specifying their addresses.

Change the ORG statements of all modules (except the main
program), based on the Link Map that you have created.

Reassemble all modules.

Concatenate S-records and eliminate interior S0/S8 records.

20

X68000 Cross Assembler -- User's Manual

jettaitatetieiiettasetitiieittitisetitiotiped]

f
H flags: A ipointer to array
| iters D0
4 count: D}
H it 2
1 prise: D3
i : D4
PERRRERRREERRRESRLRRERRRs RSt Rt ERaIsssRIRLIINY
org $1000
00001FFF size eou B19{ ;array size
001000 00 tlags ds size sarrav of boolean
00000004 iter eou 10 110 iterations
00000001 TRUE equ #00000001 :
00000000 FALSE equ #00000000 H
000000E4 tutor equ 228 treturn to 08
arg $3000
003000 J03C000A start wsove #iter,d0 iset max iterations
003004 207C00001000 movea.] ¥flags,al tpoint to flags
003008 7200 apain soveg #0,d] scount {-- 0
00300C 7400 soveq #0,d2 11 ¢--0
D0300E 11BC0O0012000 setflg move.b #TRUE,0(a0,d2} ;flaosfi) <{-- TRUE
003014 5242 addg #1,42 i (-1 +1
003016 B4TCIFFF cap #s120,d2 11) size?
00301A bFF2 ble.s setflo H
00301C 7400 aoveg #0,d2 (-0
00301E 0C3000012000 next capi.b tTﬁUE,O(aO,dZ) s#1agsli] = TRUE?
003024 461C bne.s notrue !
003026 3602 aove d2,d3 iprime (- i +1 +3
003028 D642 add dz,d3 :
003024 5643 adda #3,d3 ;
00302 1802 move d2,d4 ik {-- 1 ¢+ prise
00T02E DB43 add 43,d4 ;
003030 BBICIFFF more Cap #s1ze,d4 1k {= size?
003034 AE0A) bot.s nxten]
003036 11BCOO0O40OO0 sove.b #FALSE,0(a0,d4) ;flagsik] <{-- FALSE
003030 DB4T add 3,04 ik (=- k + prise
00303 40FQ bra.s wmore :
003040 5241 nxtent addg #i,dl scount {-- count + |
003042 5242 notrue addq #1,d2 (- +
003044 BATCIFFF cap #s1ze,d2 31 7 size
003048 4FD4 ble.s next :
003044 5340 subg #1,d0 jiter {(-- iter - |
00304C 4600FFBC bne again slast iteration?
003050 3EICOOE4 sove #tutor,D7 rescape to supervisor
003054 4E4E trap 414 :
003054 end

END OF ASSEMBLY
0 ASSEMELY ERROR(S).
£ 1} Svabolic Reference Table % 8

: 0000300R | FALSE + 00000000 | FLAGS : 00001000
: 0000000 | MORE ¢ 00003030 & NEXT 1 0000301E
: 00003042 | NXTCNT @ 00003040 1 GSETFLE 5 0000300E
s QOOCIFFE ; START 2 00003000 § TRUE : 00000001

: 000000E4

Figure 9
Sieve of Eratosthenes

As implemented for Motorola Educational Board
Computer MEX68KECB/D2.

21

X68000 Cross Assembler -- User's Manual

000000
000002
000008
20000C
00000E

000010
000011
400012
000013
000014
000613
000016
000017
000018
000019

000014
~es)

DYSCOD

oF
02
10
20
13

3F
06
5B
4F
b
&b
7D
07
7
67

END
0A

PERERIRERIRRRRA SR RRRIRURIRRRIRLRRARLLIILRIINIINY

8.C.D to 7-5eoment Conversion

1
}
H
'
' Entry DO = BCD digit
1
1 Exit 7-Seoment eguivalent --> DO
H
1

PRUSEERRRRRRIRRRRRRsReasssasisneasissssesnesing

org ¢
08 dyscod move.l a0,-(5P)
800000000F andi.l #$000F,d0
JB00S sove,b look-2-3(PC,d0),d0
aF sovea.l {(GP)+,al
75 rts
3
Look-up Table
H
look dc.b $3F
dc.b $04
dc.b $5B
dc.b $4F
dc.b $6b
dc.b $6D
dc.b $7D
dc.b $07
dc.b $7F
dc.b $47
end

OF ASSEMBLY
SSEMBLY ERRDR(S),

$ 3% Syabolic Reference Table $ ¥4 &

: 00000000 ¢+ LOOK : 0000001¢

+
i

Figure 10

ssafekeeping _
yclean BCD

sget 7-Segaent code

irestaore register

}07
’1!
$21
’3)
14!
)5)
HIM Y
}7.‘
78, —
19’

‘mm me me s me aw

‘am me mm

B.C.D. to 7-Segment Display Driver
Demonstrates the use of PC relative addressing
to access Local data in position independent code.

22

