
r

XEEfrfrfr 6

rfr- fi55 fr 55E n ELFR'
tji

X68000 Cross Assembler

User's Manual

Brian R. Anderson
2977 East 56th Avenue
Vancouver, B.C. V5S 2A2

Table of Contents

Introduct ion
System Requirement,s
M68000 Syntax

Instructlons
Addressing Mode
Assembler Direc
Expression Eval
Program Layout

Operation
Output Files

Listing Fi1e
S-record File

Manual Linking
Tracking Global Data
Tracking Subroutines
Link Example

Example Programs

tives
uat ion

l_

1
2
3

4
5
6

7
9
9
9

1n

10
t_1
L2
2I

X68000 Cross Assembler Userrs Manual

Introduction

X68000 is a two pass cross assembler for the Motorola
M68000 microprocessor. It accepts standard Motorola syntax (with
some limitations noted below), and produces a formatted program
listing file, and an object file consisting of standard t4otorola
S-records. The S-record format is fu1Iy explained on page 9.

System Requirements

one or more disk drives, and either cp/14-80 with 64K Bytes
of memoryr or MS-Dos with l-2BK Bytes of memory, are required to
operate the assembler.

Software Supplied

The X58000 package consists of the following files:
t X6B000.COM /x6B000.EXE The assembler program

OPCODE.DAT Lo operate.
Requires

* OPCODE.DAT
table for
stored in
fi 1e first
tlnt I l\r nh

A data file used to initialize the
the assembler. This is NOT a text fi
compact binary format. X68000 will
on the currently logged drive, then
dri-ve B.

mnemonic lookup
Ie. The data is
search for this
on drive A, and

With the standard configura
tabl,e for 500 identifiers.
200-250 lines per minute.

tion, there is room in the symbol
Assembly speed is approximately

Copyright

Copyriqht (c) l9B5 by Br:ian

softwar:e may be
I rrse i)rrr\.,/ided on

Thi
com mc.rc
intact.

J

!a

+

Lf

Anderson

reely copied for personal, non-
that aIl copyright notices remain

Acknowledgement

The assembler was developed in the CP/M environment using
the ModuIa-2 compi ler from Hochstrasser Computing AG(Switzerland), and later ported to the I4S-DOS environment using
the Modula-2 ccmpiler from LogiTech (Palo A1to, C&lifornia).

X68000 Cross Assembler User's Manual

M68000 Syntax

This userrs manual does Nor fu1ly cover the M6B0o0 syntax,
but onry enough of it to explain how the assembler operates. rtis assumed that the reader has a copy of one of the folrowing
Motorola reference manuals (or other appropriate references):
*].6-8IT MICROPROCESSOR USER'S MANUAL

(3rd edition) MC6B000Ut4 (AD3)

* M6BOOO L6/32-BIT MICROPROCESSOR PROGRAMMER'S REFERENCE MANUAL
(4th edition) M6B00OUM(AD4)

The standard syntax as outlined in these manuals is adhered
to in most instances. However, there are a few limitations,
which are explained in later sections of this user's manual.

There are three formats used for the instructions:
(The labe1 is optional in al1 cases.)

Operand is implied or inherent to
(labe1) (opcode)
Eg.: RTS

the instruction.

;Return from subroutine

(operand)
(A2) ,A2 points to subrout ine

t ends up in second operand.
(source operand) r (desti,nation operand)
#4,D0 ;Add 4 to data regi-ster 0

Single operand.
(label) (opcode)
Eg": JSR

Two operands. Resul
(1abe1) (opcode)

ADD

Labe1s may consist of any combination of up to eight
letters, numbers, and the underline character; labeIs must not
start with a number. upper and lower case Ietters areequivalent. This assembler does not expect a colon after the]abe1. some examples of valid and invalid labels forlow:
VALID: start L23 under VAL23
INVALID: 62HOPE error: much too loncr

X68000 Cross Assembler User's Manual

-Instructions Supported;

Although all Motorola mnemonics (except those specific to
the 680f0/68020) are supported, a few notes are needed to explain
the peculiarities of X68000. Because the 68000 has such a huge
instruction set, there is some overlap that is, there is
sometimes more than one correct way to represent an operation.
For example, there are three ways to add one to a data register:
ADD #1,D0; ADDI #l'O0; ADDQ +l'D0. Some assemblers will
substitute one form for another usually choosing a more
efficient instruction. With this assembler, you get the mode you
ask for period !

Motorola provides special instructions for address
manipulation to ensure that the programmer is well aware when
addresses are being changed. Howeverr rnan! 68000 assemblers w111
substj-tute ADDA (add to address) automatically even though ADD is
specified. X68000 does not make this substi-tution, and for
example, will flag ADD #4,A2 as an error; ADDA *4,A2 must be used
instead.

DBRA (Decrement, Branch Always) may be used as a synonym for
the less intuitive DBF (Decrement, Branch False). The DBcc
looping instructions usually combine three operations: Test a
condition; Decremen't a register; If the reqii-ster is not equal
to negative one, then branch. The DBRA/DBF effectively omits the
first of these steps. This is the only instruction for which a
synonym exists.

The M68000 requires that all instructions be aligned to WORD
boundaries. X6B000 ensures this by forcing all instructions to
the next highest even address (i.e., to WORD boundaries). Since
all instructions require an even number of bytes, this feature
would usually only make a difference if you tried to originate
code (see page 5) at an odd address or if code follows directly
after a data declaration reservi-nq an odd number of bvtes.

X68000 Cross Assembler User's llanual

-Addressing Modes Supported:

The majority of instructions use the same L2 addressing
modes (or a subset of these) to calculate the effective address
of the operand(s). The Branch and Decrement/Branch group of
instructions are unique in that they use only the relatlve
addressing mode; in which case the assembler calculates the
relative offset if given the absolute destination address
(usua1ly specified as a labe1). The special modes (CCR, SR, USp)
are used in only a very few instructions.

MODE

Data Register Direct:
Address Register Direct:
Address Register Indirect:
Address Register Indirect
Address Register Indirect
Address Register Indirect
Address Register Indirect

with Postincrement:
with Predecrement:
with Displacement:
wi-th Displacement and

SYNTAX

Dn
An

(An)

(Ani+
- (An)
d (An)

Index: d (An,Xi)
xxxx . W

xxxxxxxx.L
d (Pc)
d(Pc,xi)
(1abe1)

ccR
SR

USP

Absolute Word:
Absolute Long (default):
Program Counter with Displacement:
Program Counter with Displacement and Index:
Relative:
Condition Code Register:
Status Register:
User Stack Pointer:

* n is the register number: L..7

Absolute mode will default to the
specified. Eg.: MOVE D0,$400
alt.ernatives for specifying JI\'1PlJSR
Eg.: JSR.S <label) or JMP (labeI>.W

SP is a synonym for A7. Eg. : MOVEM D1,/D4-D6,- (SP)

Branches and Absolute Jumps will default to their long form
unless the short form is specified. This is done by applying
a .S suff ix to the opcode. Eg.: BRA.S <1abe1)

Modes requiring a displacement MUST specify same, even if the
displacement is zero. Eg.: MOVE #300,0 (A0,D2)

long form unless word is
0.W (This a1lows two
in the word range.)
(the first is preferred)

The current value of the program counter is indicated by *.
This is often used to invoke the Program Counter relative
addressing mode for JMP/JSR instructions.

;Jump to DEST using PC relative.
;The'-2' is required because
;the M68000 increments the PC
;twice before it calculates the
inew value for the PC.

E'n . JMP DEST**-2 (PC)

X68000 Cross Assembler User's llanual

-Assembler Directives Supported:

DIRECTIVE

Originate Code or Data:
Equate a Symbol to a Value:
Force Program Counter to Word Boundary:
Define Constant, Byte:
Define Constant, Word (default):
Define Constant, Long:
Define Storage:
End of Source Code:

SYNTAX

ORG
EQU
EVEN
DC. B
DC.W
DC. L
DS
END

All values used
they are used.
directives are

in assembler
It is most

constants.

directives must
usual that the

be defined before
arguments of the

DC.W aligns to the next word boundary.
long word boundary.

DC.L aligns to the next

DC may be used to store constant strings maximum 10
characters per directive/1ine, in addition to its usual
function (to reserve memory for variables). For longer
strirgsr multiple DC directives may be used. When using this
feature, DC, DC.B, DC.W, DC.L are all equivalent.
Ern

MSG DC.B 'This is a ' ;Maximum 10 characters per DC!
DC.W 'very long I

DC.L 'message.'

The form (label) DC.B L0,20,30 is not supported.
(label) DC.B 10

DC.B 20
DC.B 30

You must use:

* DS always defines the storage in bytes, and leave the reserved
memory uninitialized.
BUFFER DS 80 iReserve 80 bytes for the BUFFER.

* There must be at least one <CR><LF> after the END pseudo-op.

The assembler does not produce relocatable code, and
therefore does not support the directives associated with
relocation and/or linking. However, the 68000 instruction set
makes it very easy to produce position independent code. By
using no absolute mode instructions (program counter relative is
available to most instructions), your resulting code can be
relocated and linked without the use of a linking loader. More
on this later.

X68000 Cross Assembler User's Manual

-Expression Evaluation :

As mentioned above,
characters) is supported
directive. In addition,
insert the ASC I I hex
into instructlons.

Eg.: CMPI #'0',D0 icompares D0 with $30 ('0' = $30 in ASCII)

Limited arithmetic expression evaluation is also supported
for both assembler directives and instructions. Decimal
constants in the range of +/- 65535, Hexadecimal constants in the
range of O-$FFPPFFPF (32 bits), and Binary constants in the range
of 0-811-1-111-11111-11111 (f 6 bits) are al lowed. Hexadecimal and
binary constants are sign-extended to 32 bits (sign extension can
be defeated by including a leading zero Eg.: 9OFF), Octal
constants are not supported. The only operations that are
allowed in expressions are addition and subtractj-on. Expressions
are evaluated left-to-right, and must not contain parentheses or
spaces. Although there is no limit to the number of terms in an
expression, the total length of operands is limited to f9
characters. (Unsupported operations multiplication, division,
etc. will be flagged as an errorr usually as an Undefined
Symbol) . Eg.: ADDI #SIZE-4,D0

limited string evaluation (up to ten
for the Define Constant assembler

si-ng1e quoted l itera 1s may be used to
value into equate statements or

-Source Program Layout:

* Labels must appear at the left margin.
* Op-Codes must be separated from labels (or left

label is absent) by at least one tab or space.
set your editor to map tabs into spaces.

Operand{s) must be separated from op-codes by at
or space.

margin, if the
It is best to

least one tab

operands (it two are present) must be separated by a comma.

No spaces may appear within 1abe1s, op-codesr or operands.

Identifiers (1abe1s) must not start with a diqit.
A11 lower case characters are mapped to upper caser unless they
appear within single quotes. The single quote itself must be
represented by its hex value ($271, and cannot be part of a
stri"ng.

The beginning of a comment is indicated by a semicolon
(anywhere on the l ine) or an asterisk (on the 1ef t marq j-n
only). The balance of such lines is ignored.

* See exarnple programs starting on page 2L.

X68000 Cross Assembler Userrs Manual

Operation

The data file OPCODE.DAT must be present somewhere on the
system for X68000 to operate. X6B000.COM/X68000.nXE and the
input file (i.e., source file) may be on any drive. The output
files (Listing and S-record) will always be written to the same
drive that the input file is on, A good arrangement is to have
your editor along with X68000.COt4/X68000.EXE and OpCODE.DAT on
the A: drive, wj-th the assembly source files on the B: drive.

operation of the assembler is very straight forward (the
hard part is creating a syntactically correct source program).
rnvoke the assembler by typing x68000, optionally followed by a
source program filename. rf you do not enter a filename, the
assembler will prompt. you for one.

The source program filename must adhere to normal operating
system (CPl M or MS-DOS) convent.ions, and is usual ly of type
extension.ASM; this will be assumed if you omit the dot
(separator) and the filetype.

To assemble a file ca1led B:TEST.ASM from the system prompt:
(Operator input is underlined)

A>X68000 B:TEST(CR)

or

A>X68000<CR>

Ent.er Source Fi lename : B: TEST<CR>

After a short de1ay, the following messages will appear
the console screen (assuming that B:TEST.ASM had no errors) :

68000 Cross Assembler
Copyright (c) f9B5 by Brian R. Anderson

Assembling B:TEST.ASM

PASS]-

PASS 2

on

X68000 Cross Assembler User's Manual

The various messages will a
passes are executed. Most of the
second pass, but some errors wil
Error messages will be output to
form:

ppear in sequence as the two
error checking is done on the

1 be detected in both passes.
the console in the followinq

23 LOOP JMP D3 ; Repeat input section

This addressing mode not allowed here.

The number (231 indicates which line of the source file that
the error was found orr and is followed by the line as it
appeared in the file.

In most instances, an arrow (^) will point to the location
of the error. Although the error detection is very good (alI
errors will be reported), the verbal error messages will
sometimes nEed interpretirg, especially if totally incorrect
syntax is encountered.

Since X68000 has no way of knowing how tab stops have been
set up on your editor and video terminal, the error arrow (^)
will not be positioned correctly if tabs are included in your
68000 source code. For accurate positioning of the error arrow,
you should set your editor to map tabs into spaces.

After an error, assembly will be suspended until any key on
the console is strucki this allows the programmer to make note of
the error bef ore cont.i-nuing. Alt.hough the l isting f i le wi I1
contain a tally of the number of errors found, the errors will
not be pointed out. The only detailed error information comes
from the error messages output to the console.

The assembler will abort with an error message under three
condi-tions: no source file; out of room in the symbol table; too
many errors encountered. There is room for 500 symbols, and upto 500 errors are al lowed before termination. (The operator may
ai:ort after an1/ ary^v l-rrr +l,ping COntrol-C.)

X58000 Cross Assembler User's lianual

Output File Format

The listing file contains everything that was in the source
file (formatted into pages), along with the object code generated
for each line of source code. Also included in the listing file
is a sorted symbol table showing all identifiers defined by the
programmer, along with their values. To get a print-out of the
lj-sting fi1e, use your operating system utility (PIP, COpyr oy
similar) to send the fl1e to the printer.

The S-record file may be used to upload the object code to
development hardware or EPROM programmers, etc.. The format
adheres to Motorola standards, as outlined below.

Three types of records are used: S0 (neader), S2
(code/data) , S8 (trailer). The S0 record contains a 2-byte
address (always zerol i the 32 and SB records contain 3-byte
addresses (S8 address is always zero, too). The 32 record is the
most important, and will be explained in detail. The other
records have a substantially similar format.

The S2 records provide all the address' code, and data
information about the source code. Each record is autonomous in
that it contains both the code or data along with the memory
address where that code or data is to reside. Each record is
also checked for errors by way of count and checksum fields.

Each S-record consists of up to 5 fields:
*Sn

* Count

Indicates the type of

Byte count; includes
but excludes S-type

Starting address of

16 bytes of program
source filename for
SB record.

Least significant byte of
the sum of count, address,

f ield (where n is 0 - 9).

address bytes and checksum,
& count.

this line of code or data

code or data. Contains
S0 record; absent for

Address

Code/Data

* Checksum 1's complement of
and code/data bytes.

X68000 Cross Assembler User's Manual

llanual tinking

Linking consists of joining two or more separately assembled
modules together to form one executable program. To make manual
linking practical, it is important to make all modules positj,on
independent. That. means that they can be loaded at any address
in memory, and they will sti11 execute properly. In practical
terms, t"hat means you must avoid the use of absolute address
references in your code modules.

Although absolute address references prevent complete
position independencer thelz are impossible to avoid altogether.
A program may be made of several modules, each wit.h one or more
subroutines. When the main program, or any subroutine, calls a
subroutine that is outside its own module (a very common
situation!) , it must know the absolute address of that
subroutine. In the case of global data (data that is accessible
by all parts of the program), absolute addresses are also needed.
(However, all locaI references can easily be made position
independent through the use of relative address instruct.ions or a
stack frame. See figure l-0 (page 22) for an example of relative
addressing.)

An assembler and linker often team up to provide these cross
references to all parts of a large program. The programmer
specifies all objects (data and subroutines) that are to be
accessed from outside a module, as GLOBAL. At assembly time,
additional information is included wit.h the assembled object
file. That information includes the name of all GLOBAL objects,
and their relative position within that module. At link ti-me,
the Iinker collects this information from all modules, and
resolves accesses to GLOBAL information. The code produced by
X68000 DOES NOT include relocation information, so linking must
be done manual1v.

-Tracking Global Data:

To manually perform linking' the first step is to choose one
area in memory where all global data is to be located. Global
data should be kept to a minimum anywayr so keeping track of this
area should be no real burden. Each time you need a new g1oba1
Cata itemr write down its name, size, and relative position (in
l:ytes) within the globaI data area. When referring to these
absolute addresses, simply use the starting address plus the
relat-ive r:osition.
lj'a

GLODAT
*

*

$0200

D0, GLODAT+ 4

EQU

MOVE

;G1oba1 data starts here

; Store at 2nd Long Word
,of Global Data area

l-0

X68000 Cross Assembler User's l{anuaI

-Tracking Subroutines :

Manually tracking subroutines is a littIe more difficult, as
it involves some calculation of addresses, and some reassembly of
modules. The first assembly is done with all modules (except
possibly the main program module) originated at zero, and with
equate statements for each external global subroutine name
showing the address of that subroutine as zero. The assembler
will calculate the starting address of each internal subroutine
(in fact, of each instruction), as well as the total length of
a1l modules. Record all of this information.

Now, you have a few calculat.ions to do: figure out the total
memory requirements, and determine the new starting address for
each module by stacking them end to end (thls is called a Link
Map). Based on the actual starting address of each module and
the relative address of subroutj-nes within that module, calculate
the absolute address of each subroutine. Next, change all EQU
stat.ements that refer to g1oba1 subroutines to their real
addresses; and change a1l ORG statements to reflect their
posit.ion within the stack of modules that you have created.
Fina11y, reassemble all modules.

Linking is now just a matter of concatenating all of the S-
record files (with PIP or COPY) and then eliminating extraneous
S0 and SB records (leavj,ng only the first S0 record, the S2
records from all modules, and the last SB record). The S-record
file is then ready to upload to a PROM programmer. A11 sections
will automatj-cally be loaded to their correct areas in memory due
to the nature of S-records (see page 9 for more details on S-
records) .

1l-

X68000 Cross Assembler Userrs Hanual

?he following simple example illustrates manual linking of
three modules. The first module consists of a main program,
while the others each consist of 2 subroutines. Four items of
global data are shared among the modules.

The results of the initial assembly are shown in figures J-

through 3 (pp f3-15). The main module declares four data items.
Notice that their offsets reflect the size of the data (one is
LONG (4 bytes) , while the others are WORD (2 bytes)). It is up
to the programmer to calculate these offsets.

lnformation derived from the first assembly listings:
* MAIN ends at $1038. (BIG will start here)
't DOUBA subroutine starts at beginning of BIG.* TRIPB subroutine starts $f4 bytes beyond the beginning of BIG.* BIG ends at $30. (SMALL will start at $1038+$30 --> $1068)* HALFC subroutine starts at beginning of SMALL.
* THIRDD subroutine starts $lC bytes beyond the beginning of

SMALL "* SMALL ends at S38. (This information is not needed, because
SMALL is the last module)

Proposed Link Map:
(BIG and SMALT stacked on top of MAIN.)

s1000

MAIN

q1n?a

BIG
DOUBA

TRIPB

HALFC

THIRDD

$1038+0

$1038n$14 --> $l-04C

$1068+0

$r068+$tC

S1O6B

SMALL

$ 10A0

The addresses of the subroutines must now be substituted for
the zeros in the EQU statements that refer to them in MAIN.
Also, the new ORG values indicating the start of modules BIG and
SMALL rnust be substituted for t.he zeros i.nitial ly used. Figures
4 through 6 (pp 1"6-18) show the f inal listings with al l external
address references resolved.

Figure 7 (page 1-9) shows the concatenated S-records, while
figure B (page f9) shows the same fi1e with the extra S0/SB
records removed. The S-record in figure B is now ready for
uploading.

L2

X58000 Cross Assembler User's Manual

rililuilrililf ililtililillilliltiltuuilniltntt
t
I tlain Prograr
loi
I flanual Link Exarole
t
rilililttnilf f tf ||tf ltiltt|f iltf ntf iltf ilil||ilrl

ilRE t100 :tlobal Data Area

t00100 00000000 A I}C.L 0 :0{{set = 0

000104 0000 B DC.H 0 :0{{set = 4

000106 0000 C [C.l 0 :0{{set = 6

000108 0000 D 0C.l{ 0 :01{set = I
00000000 D0UBA EgU t0000 lExternal Subroutine
00000000 TRIPB EgU t0000 :External Subroutine
il0000000 HALFC E0U t0000 lExternal Subroutine

00000000 THIRI}D E0U t0000 iExternal Subroutine

0fi6 il000
001000 203c00000100 llAIll ft0vE.L |t100.00

I
00r006 21c000000100

00100c 4t8900000000

c010r2 3Ic000000104

001018 4E8900000000

00101E 13c000000106

0010?{ 4ts900000000

001024 1tc000000108

00 t0,10 4Es900000000

!101036 4E40

00 1 0t8

---i EN0 0F ASSE|SLY

---) 0 ASSETIBLY [HR0R(5]"

I | | Svnbolic Re{erence Table | | |

A :0i1000100 i I ;00000104 i i :0000010t
0 :00rr00i09 i 00UBA :00000000 i HRLFC :00000000
llAlfl r000C1000 i THIRDD :00000000 I TRIPB :0000000t)

Figure 1

Main program module. Global data declared,
and offsets calculated. Since addresses of
external subroutines are unknown, zeros are
inserted in the equate statements that will
eventually contain their absolute addresses.

IIOVE. L I}0. A

J5ft D0UBA :A dsubled

tl0vE D0, E

JSR IRIPB :B triopled

HtlvE 00. c

JSf HALFC lC halved

IIO\,E DO. D

iSR THIRDI} :D Divided by 3

TfiAP l0 :Return to Dt]S

Er{[

IJ

X68000 Cross Assembler User's Manual

uliltilt$ililnnilf iluililrilnililtilililil
| llodule used bv ilain
I Ho over{ior checking in subroutines
f f ilillf ltf tf f llf lllf illll$f illilluilililtf ill

00000100 6L0BDAI EgU ll00 :Start of Data

0R6 0

000fi00 lF00 I}0UBA lt(}VE 00.-{SP} :Push register
t00002 ?03900000100 |I0VE.L 6L08I)AT+0,00 i6et Elobal Drte

000008 0080 A0I}.L 00,[0 :Double it
000004 ?1C000000100

'{0VE.L
00.610804T+0 :Put it back

000010 IglF fl[VE {SP}+,00 iRestore reoister
000012 4E75 RTs

I
000014 4847C000 TRIPE l'l0VElt D0/Dl.-{SP} ;Srye resisters
000018 103900000104 ll0|JE 6L0BDAT+4.00 :6et tlobai Data
.f0001E l?00 llt]VE 00.01 iflalte a copy

0fl00?0 0040 AI}D 00.00 :Oouble it
00002? D04l ADD 01. D0 i Tri ple

000024 1,1C000000104 llOVE D0,6L0B0AT+{ :Put it bacl:

00002A {C9F000i ll8VEll tSP} +, D0/Dl I Restore reoisters
f 0002E 4E7-: RTS

I
t00010

---i Et{0 0F AssEilELY

--.} (i ASSI}IBLY ERR{]R(S].

| | t Svnbolir Fe{erenre Table I t I

D0UBA ;00000000 i tL0lI)AT r00000100 I TRIPB :00000014

Figure 2

BIG module containing DOUBA and TRIpB
subroutines. Start of G1obal Data Area is
specified with EQU statement. A11 g1oba1
data is offset from this.

1A
I:

X68000 Cross Assembler User's llanual

utillililililuttililnilutttililililf $ilil1
I Subrsutines {or }lain
iltrilliltilf ttf f tilililililttlrrf f rr$rf niltr

00000100 6L0BDRT E8lJ $t00

0R6 0

000000 ?F00 HALFC ll0VE.L DO.-{SP} :Push

000002 301900000106 ll0Vt.t 6L08DAI+6.$0 i6et Elobal Data

000008 80FC000: DIVU 12.00 :Hal{
00000C 028OFFFFFFFF A1{01.1 ltFFFF,l}0 iDurp rerainder
000012 31C000000106 I10VE.H D0,6L0BDAT+6 :Put back data

000018 i0lF H0VE.L (SP)+.00 rPull
000014 4E7: RT9

t
00001C ?F00 THIRI}D i{0VE.L 00.-{SP} :Push

00001E 103900000108 lt0vE.fl 6L0BDAT+B.I)0 i6et data
000024 80FC0001 DIVU t3.00 :Thirc
000028 0iB0FFFFFFFF AllDl.L IfFFFF.D0 iDuro rerainder
00002t 11C000000108 fl0vE.ll D0.6L0B0AI+8 :Put back data

0000"14 :01F l10VE. L {SP)t. D0 ; Pul I

0000t6 4E75 RTS

t
000018 EtiD

---]r END OF ASSEIIILY

---) 0 AsSErlBLY ERR0R{S).

| | | Svnbolic Fe{erence Table t | |

EL0BDAT r000001t]rt I HALFC :00000000 I IHIRDD :0000001C

Figure 3

SMALL rnodule with HALFC and TI{IRDD subroutines.

L5

X68000 Cross Assembler Userrs Manual

ilrtililtf uttf f f ililtf f ililrf tf ilf iluf tf f f tf f tttf
t
I llain Froorar
loi
I llanual Link Exarole

I
iltf iltf ntf ilttf f f tf tilf f ilutf tf ilfilf ||tf ilf iltf

0RG fl00 r6lobai 0ata Area

000100 00000000 A I)C.L 0 :0{{set = 0
000104 0000 B 0C,l 0 :0i{ret = 4

000106 0000 C DC.l 0 i0{iset = 6

000108 0000 D I}[.H 0 :0{{set = I
00001038 I}0UBA E0U t1038 :External Subroutine
0000104C TRIPB EOU fl0{C :Erternal Subroutine

00001068 HALFC EgU i1068 rExternal Subroutine

00001084 THIRI)I) EgU t1084 :External Subroutine

0ft6 il000
001000 203c00000100 ilAlN ll0vE.L ff100.00

I
001006 ?3c000000100 lt0vE.L I}0.A

00100C 488900001038 J5fi 00UBA :A doubled

I
0010t2 3Jc000000r04 ll0vE 00.8

001018 4E890000104C iSR TRIPB :8 triopled
I

00101E 3JC000000106 ll0vE 00,[
0010?4 4t8900001068 iSR HALFC :C halved

I
0fJlciA 1tc0il000r1108 il0vE D0.0

101030 4E890000108{ JSR THIRDD rD Divided bv 3

I
'101016 4E10 TftAP f0 ifteturn to 00S

00r0lE Etio

---:' tflD 0F ASSE}IBLY

---) 0 AssEillLY ERR0Rrsi,

I t t Syrbolic Re{erence Table I t I

A r011000100 i B 100000104 i C :00000106
D r00000108 I D0UBA :0(t0010J8 i HALFC :00001068
IIAIN r00001000 i IHIRDI} :00001084 i IRIPB :0000104C

Figure 4

MAIN module must be altered and reassembled,
due to external subroutine references.
Addresses calculated earlier (see page L2l,
have been inserted into the EeU references.

Ib

X68000 Cross Assembler User,s Manual

ililillf ililtf rf ltilf ililtnlulilllllililf liltt
I l{odul e used by }lai n

I l{o over{lor checkino in subroutines
f f illlltf luillllrf ilf lllill|lilllf f f f f ilrf f f ill

00000100 6L0BDAI EOU tl00 :Start o{ Data

0F5 il0l8
001038 .lFO(' 00UBA l{0VE 00,-{SP} lPush register
0010IA 301900000100 l10vt,L EL0II}AT+0.00 l6et Eiobal Data

001040 0080 ADD.L 00,00 :Double it
00104? :IC00000010C l10VE.L 00,6L0BI}AT+0 lPut it back

001048 l0lF ll0vt 15p1+,00 lRestore register
0010{A 4E75 RIS

I
00104C 48A7C000 TfilfB il0VEll I}0/01.-{5F) ;Save reqisters
C01050 1019C0000104 ll0VE 6L0BI}AI+4.00 :Get Elobal Data

001056 l?00 l{0VE I)0,Dl :llake a copy

001058 0040 ADD 00,00 tOouble it
001054 D0{l ADD Dl.I)0 llriple
00105C I1C000000104 H0VE D0,6L0BI)AT+4 ;Put it brcl
001062 4C9F0003 tl0vEll (SF)+,p6791 lRestore reoisters
001066 4t75 RTt

I
001069 EilD

---i ${0 0F A55EI{BLY

---i O ASSENBLY ERRORIS).

t | | 9vcbolic fte{erense Table I t t

00UEA r0tt0(11038 i 6L0BI}AT rt)0000100 i TRIPB :0000104C

Figure 5

BIG module with ORG changed to coincide withLhe Link Map.

L7

X68000 Cross Assembler Userrs Manual

ilf ilf ililuf tf ililtf f f tf ililf tf uilil||tf ilf f l
I Subroutines {or }lain

tf iltf f tf il||trtf iltt|ilf f rf tf tf iltf rf f ||tf ilrl

00000100 6L0BDAI E8U lt00

001058 iF00

00106A I0i900000106

00r070 80Fc000?

OO1l]74 02EOFFFFFFFF

00t074 t3[000000106

00108'.t ?0lF

001082 4E75

00r084 ?F00

001086 101900000r08

00108[80Fc000]

OOl09O {]iSOFFFFFFFF

001096 33c000000108

00109c 30tF

00109E 4E75

00 I 040

0R6 il068
HALFC ll0VE. L 00, - (SPl : PuEh

II0VE.t 5L08DAT+6.00 :6et 6lobal Drtr
I)iVU l?.00 rHai{
AI{I}LL ltFFFF.D0 i0urp rerainder
l10vt.fl 00,6L0BI}AT+6 :Put back drta
t{0VE.L (SP}+.00 :Pull

t
THIR0D ll0VE, L 00. - {SP! : Push

II0VE.H 6L0FDAT+8.00 i6et data

I}IVU 13,00 : Third
ANOl.L *IFFFF.D0 iDugp rerainder
llt]llE.l{ I}0,6L0B0AT+8 :Put back data
|l0vE. L t sF i +, Dt) i Ful l
RTS

I
Eti0

---) EHo 0F AS5$i8LY

--- i r] ASSEI{BLY EIIROR IS } ,

| | | Synbolir Re{erence Table | | |

EL0BDAT :0000t1100: IIALFC :00001068 i THIROI) :00001084

Figure 6

SMALL module with ORG changed to coincide
with the Link Map"

t-u

X68000 Cross Assembler Userrs Manual

s00800004041 494E?E4 I 5l4l}CC

s20E000 I 0000000000000000000000F0

s? I 400 1000201c00000 I 0023c000000 I 004E89000091

521 {001 0r010t81]c00000010{4E890000104ci3c035

s2 I {00 I 02000000 r 064E890000 I 0683tc000000 10839

9?0c00 I 0304EF90000 I 08{4E{0sA

5804000000FI

500400004?{947?E4 r 51401 4

s20c00 1018]F00203900000 I 001 :
s2 I {00 I 0{0008023c000000 r 0030 I F4t7548A7c000A6

s2 I 400 105030J900000 1 04320000f 0004 l tJc0000007

920C001 0600 r 01{c9F00034E75C0

s804000000Fc

500c00005I1D4 I 4C4C?E{t 53{D6B

s20c00 l 0682F00J0t900000 I 060c

5? I {00 r 07080FC00020?80FFFFFFFF33C000000 I 0675

s2 I 400 I 08020 I F4i75?F00303900000 I 0880FC000339

s?1 40010900280FFFFFFFFJIC00000010810 l F{E75CF

s804000000FI

Figure 7

Concatenated S-record fite before extra
S-records are removed.

50080000404 I 494E284 I iI4DCrl

s?0E000 I 0000000000000000000000F0

52 I 400 r 00020Ic00000 r 00?u000000 I 00{88900009:

5? l 400 t0 I 0101811c000000104{E890000104c3Ic0I5

s2l{00 10?0000001 064E89000010a833c000000 t08I9
5?0c00 I 0301€B?0000 1 08{4t408A

s?0c00 r0t8lF00?01900000 t00t :
$? I 4001 0400080?:c000000t 00I01 F4ti5{8A7c000A6

s2 1400 r05010t900000 104I2000040004 llIc00000D7

520C00 1 0600 I 0{{[9t000]{E75cD
s?0c00 1 0682F00101900000 I 06011

s2 1 {001 07080F[000?028oFFFFFFFF3]C0000001 0675

32 I 400 I 080?0 1F4E752F0010I900000 I ogBoFc000$9

9: I 1t01 0900iB0FrFFFFFFl3C000000r08?0 tF4E75cF

5804000000F1

Figure B

Final S-r:ecorcl files. Ready for uploading
a PROM programmer or evaluation circuit.

19

to

X68000 Cross Assembler Userrs Manual

Although this is a simplistic example, the same method can
be used to manually link virtually any group of modules. The
main points to remember:

* Avoid absolute references. Use relative branches for all
internal jumps. Use PC relative addressing (or a stack frame)
for access to locaI variables. Absolute references will be
required only for access to g1oba1 data and external
subroutines.

Keep all global data together, and calculate the offset of each
based on their size and position. The correct place to declare
global data 1s in the main program module.

* ORG the mai-n program at whatever location you wish.

Provide EQU statements to specify the starting address
external subroutines. These are initially set to zero.

* ORG all modules (with the possible exception of main) at
* Assemble al1 modules.

Create a Link Map by stacking all modules on top
program.

CaIculate the starting addresses of all subrouti
their position in the Link Map, and their relative
the beginning of their own module. The necessary
regarding these addresses is obtained from the fi
listings.

of all

zeto.

of the main

nes based on
offset from
information

rst assembly

Substitute the absolute address of all external subroutines
(calculated with the aid of the Link Map) in the EQU statements
specifying their addresses.

Change the ORG statements of all modules (except the main
program), based on the Link Map that you have created.

Reassemble all modules.

Concatenate S-records and eliminate interior S0/SB records.

20

X68000 Cross Assembler

0000 tFFF
001000 00

00000004
00000001
00000000
00000084

001000 30Jc0004
003004 207c00001000
00300A 7200
00I00c 7100
003008 r t8c00012000
0010 1 4 5?42
001016 B4TclFFF
003014 6Ft7
0030rc 7{00
00301E 0cI000012000
0050?4 661[
0010?6 1602
00t028 0642
001024 56{3
00302c 180:
00I0?E D84l
003030 BETCtFFF
00303{ 6E0A
001016 I t8c00004000
c03()Ic DEfi
00I0lE 60F0
0030{0 52{l
001042 5242
003014 847ClFFF
003048 6FD4
0030{A 5I40
0030{c 6500FFBc
00I050 IEt[00E{
00t054 4E4!
003056

---) Eilo 0F AgsEflBLY---i 0 ASsillFLY ERR0RTS).

User's Manual

lllnilmllliltntilmillH$ilf ililf tf ilttf
;pointer to arrry

f f ililf t|tf rf ilf ililtf tf rf rf tf iltt|||tuilillf

I
| {laos: A0

I itei: 00
t count: Dl
I i: D2I orire: I)JI k: D4
I

6Fn

size eou
{laos ds
itei esu
TRUE equ
FALSE equ
tutor eou

t7A

start rove
rovea. I

aoain soveq
l0veq

set{lq eove.b-
addq
cfip
ble.s
r0veq

nert crpi. b

bne. s
EOYE
.,1,1!uu
addo
t0ve
ad0

00re crp
bot. s
aove, b

add
bra. s

nxtcnt addq
notrue addq

Er9
ble.s
subo
bne
!0ve
traD
end

il00c
8r9l
si:e
l0
u00000001
r00000000
228

fI000
li ter , d0
lf I aos. a0
f0, dl
r0; d2
*TRUE, 0 (a0. d2)

ll. d2
lsi re. d2
set{ I o
10, d2

-

lIRUE,0 (a0, dl)
notrue
d?. dJ
A7. A1

ri: d3
d2, d{
d3; d{
lsi ze, d4
nxtcnt
IFALSE,0 (a0, dl l
dJ. dl
t0re
ll,dl
f1;d?
lsi r e, d2
nex t
t1,d0
aqEl n
ltutor. I)7
il4

i arraY slze
tarrav o{ boolean
; l0 iterations

i
:return to 05

:set rax iterations
:point to flags
:count (-- 0
'i /-- n

;{lagstil (-- TRUE

:i(--i+l
:i i size?

ii {-- 0

l{laqstil = TRUE?

iprire(--i+i+i
:
!
;ki__i+prire
:k {= size?

lllaostkl (-- FALSE
!t(:_k+prire
tcount {-- count + I:ii--i+1
ii) size

;iter (-- iter - I
: iast iteration?
iescape to supervisor

I I I Svobolic Re{erence Trble | | I

A6AIi{
i TER

N{]TRUE

!ITL
TUTtlR

0000t004
00000004
0000304?
00001FFF
0000{]0i4

FALSE

t10ft8
I{TTCNT

START

00000000
000030t0
00003040
0000t000

0000 I 000
0000101E
0000t00E
00000001

r LHbU

NEXT

SEIFL6
TRUE

Figure 9

Sieve of Eratosthenes
As implemented for Motorola Educational Board
Computer MEX6SKECB/D2 .

21

X68000 Cross Assembler User's Manual

f ilf ilf nutiluilililuuiltttililttfilililtf ilf
I
| 8.C.0 to 7-Seorent Conversion

t
t
I Entrv D0 = BCD diqit
I
I Exit 7-Segrent equivalent --) D0

I
tf f f n||tf ||f tf tf f tf f f nuf tf f tf ilf utf t|tililf f l

ors 0

000000 ?F08 dyscod rove.l a0.-(SPl lsa{ekeeping
000002 0?800000000F andi.l tt000F,d0 lclern BCD

000008 10380006 rove.b look-2-f{PC,dOl,d0 lget 7-Segrent code

00000C 205F rovea.l {SP)+.a0 irestore reqister
00000E 4E75 rts

000010 3F

0000 I I 06

00001? 5F

000013 {F

00001{ 66

000015 60

0000t6 7D

000017 07

000018 7F

000019 67

,J0001
A

---) T}ID OF ASSE}IBLY

---i 0 AsStHsLY ERR0R(5),

I
I Look-up Trble
I
look dc.b tIF

dc.b f06
dc.b t58
dc.b t4F

ds.b t66
dc.b t6D

dc.b t7D

dc.b t07

dc. b]7F

dc.b t67

end

t ,1,
.l

. ! jt

i '3'
I '{t
r tEt

. r at

: '8'
: '9'

| | | Svrbolic Re{erence Table I | |

DYSC0D : 00000000 I L00K : 00000010 I

Figure 10

B.C.D. to 7-Segment Display Driver
Demonstrates the use of PC relative addressing
to access Local data in position independent code.

22

