
V10.0 Copyright © 2025 CFB Software 1 of 17
www.astrobe.com

CFB Software

Astrobe
Oberon for Arm Microcontrollers

V10.0 Copyright © 2025 CFB Software 2 of 17
www.astrobe.com

Astrobe

Oberon for Arm Microcontrollers

Table of Contents

1 Introduction ... 3

2 File Descriptions ... 4

2.1 Example ... 5

2.2 Linking and Loading .. 6

2.3 Startup Code ... 7

2.4 Library Folders .. 7

2.5 Configuration Files .. 7
2.5.1 Library Folders ... 8
2.5.2 Data Addresses .. 8

2.6 Uploading Executable Files ... 8

2.7 Resource Data ... 8

3 Library Modules ... 10

3.1 Special Library Modules .. 10
3.1.1 FPU – Floating-point Unit .. 10
3.1.2 MAU - Memory Allocation Unit ... 11
3.1.3 SYSTEM .. 11

3.2 General Library Modules... 11

4 Debugging .. 12

4.1 Runtime Error Codes ... 12

4.2 User-defined Assertions .. 12

4.3 Reporting Runtime Errors ... 13

4.4 Diagnosing Runtime Errors ... 13

4.5 Diagnosing System Exceptions .. 14
4.5.1 Using the Module Disassembler Listing: .. 15
4.5.2 Using the Application Disassembler Listing: .. 16

5 Compile, Link, Build and Disassemble Commands ... 17

5.1 Examples ... 17

5.2 Command Return Codes ... 17

V10.0 Copyright © 2025 CFB Software 3 of 17
www.astrobe.com

1 Introduction

Astrobe is a fast and responsive integrated development environment for Windows. It is
used to write software to run on Arm Cortex-M0, M3, M4 and M7 microcontrollers and
Raspberry Pi RP2040 (Cortex-M0+) and RP2350 (Cortex-M33) microcontrollers. In the
following when we refer to Astrobe it applies to all of these versions.

Refer to the Astrobe website at https://www.astrobe.com/ for the latest information on the
availability of the different versions of Astrobe.

https://www.astrobe.com/

V10.0 Copyright © 2025 CFB Software 4 of 17
www.astrobe.com

2 File Descriptions

The Astrobe compiler and linker expect there to be a correspondence between the names of
modules in the source code and the associated filenames.

When you are creating a new source code file you should give the file the same name as its
module name with a .mod extension.

The filenames of module-related files created by Astrobe are made from the name of the
module and one of the following file extensions:

Ext Type Created by Used by Scope Description

.arm Binary Compile Link Module Linkable object file

.asm Text Disassemble Application Disassembler listing

.bin Binary Link Upload
M0, M3, M4, M7

Application Linked binary
executable file

.def Text Edit Module SYSTEM interface

.drf Binary Link Disassemble
Application

Application Reference information

.ini Text Configuration Compile
Link
Upload

Application Compile, link, build and
upload options

.lst Text Disassemble Module Disassembler listing

.map Text Link Application Code and data memory
usage

.mod Text Edit Compile Module Source code

.ref Binary Link Traps Application Trap reference resource
data

.res Any Link Module Resource data

.s Text Disassemble Application Assembler source

.smb Binary Compile Compile Module Symbol file of exported
items

.uf2 Binary Link Upload
RP2040, RP2350

Application Linked UF2-format
executable file

V10.0 Copyright © 2025 CFB Software 5 of 17
www.astrobe.com

2.1 Example

A module named LcdDisplay is saved as the file LcdDisplay.mod. When it is compiled the
compiler generates a symbol file LcdDisplay.smb and an object file LcdDisplay.arm.

The main module of the application called DigiClock is saved as DigiClock.mod. DigiClock
imports LcdDisplay.

When you are editing DigiClock.mod in the Astrobe editor you can automatically open the
source code of LcdDisplay by clicking on its name in the IDE's Import navigation pane.

When DigiClock is compiled the compiler uses the information in the symbol file
LcdDisplay.smb to ensure that the use of all of the variables, procedures etc. from LcdDisplay
conforms to the declarations of those items in LcdDisplay. It is not necessary to have the
source code of LcdDisplay available to validate the use of its exported items.

When DigiClock is linked the linker uses the Link Options data from the current configuration
and combines the object files Main.arm, DigiClock.arm, LcdDisplay.arm and all other
imported modules. The linker creates the memory usage map file DigiClock.map, the trap
reference resource file DigiClock.ref and the executable file DigiClock.bin.

Module File
(*.mod)

Symbol Files
(*.smb)

Object Files
(*.arm)

Object File
(*.arm)

Symbol File
(*.smb)

Map File
(*.map)

Compile

Link

Executable File
(*.bin, *.uf2)

Reference
File
(*.ref)

V10.0 Copyright © 2025 CFB Software 6 of 17
www.astrobe.com

When DigiClock is uploaded the flash memory of the target processor is programmed with
the contents of the executable file.

2.2 Linking and Loading

An application created with Astrobe is made up from a selection of the following modules:

• System Modules
Startup code module
Astrobe MCU-specific library modules
Astrobe general library modules

• User-developed Modules
Common user library modules
Application-specific modules
Main module

The simplest application consists of a single Main module accessing the System Modules.

The Linker / Loader combines all of the components needed by an application into a single
file in binary format suitable to be uploaded by Astrobe and executed on the target
processor.

A feature of the Oberon language is that all of the information regarding dependencies
between the various modules is defined in the source code. There is no need to create and
maintain separate 'make files' as commonly used in other systems.

The only details the Astrobe Linker / Loader needs to know to be able to build an application
are:

• The name of the main module

• The physical locations of the folders containing the library modules

• The start and end addresses of the data and code areas

When the Astrobe Project > Link command is selected the current module whose source
code is in view is taken to be the main module.

The details of the code and data address ranges and the physical locations of the library files
are as specified for the current configuration. See Library Organisation below for details.

If you are using the built-in function NEW to allocate memory from the ‘heap’ to dynamic
POINTER variables you can also use the configuration feature to specify:

• The address of the start of the heap

• The limit of the heap

If you keep the default values the CPU RAM is shared between global variables, the stack
(local variables) and the heap (POINTER variables). This is suitable for typical applications.

V10.0 Copyright © 2025 CFB Software 7 of 17
www.astrobe.com

However, if your system has non-CPU RAM that is directly addressable in the same way as
CPU RAM then you can change these values so the non-CPU RAM is used by the heap. More
memory is then available for global and local variables.

The values entered are listed in the linker progress report and linker map file.

2.3 Startup Code

The stack pointer, interrupt vectors etc. are initialised by startup code generated by the
linker. The startup code is the first part of the application to execute when the
microcontroller is reset.

The initialisation code of each module of the application is then executed in turn starting
with the lowest module in the dependency chain. Execution continues all the way up until
the initialisation code of the main module is started and the application proceeds.

Memory mapping control and phase-locked loop (PLL) options of the microcontroller are
configured in the process of initialising the Astrobe library module Main. The module Main
must be included in the IMPORT list of the main module of every Astrobe application to
ensure that the application is correctly initialised.

You can modify the source code of the Main, MCU and Traps modules to allow different
configurations of memory mapping and PLL features and to customise the output of runtime
error messages.

2.4 Library Folders

Groups of common files that are shared between several applications developed using
Astrobe may be conveniently organised in a system of library folders avoiding the need to
duplicate copies of common / shared files. The library folders are standard Windows folders
containing collections of source (*.mod), symbol (*.smb) and object files (*.arm).

The folder Lib\General contains generic system library files that are common to all
microcontrollers targeted by Astrobe e.g. Out.*, Reals.* etc.

The remaining folders in Lib contain microcontroller-specific versions of the library files e.g.
Main.*, MCU.* etc.

2.5 Configuration Files

The Compile, Link, Build and Upload options for the target microcontrollers are stored in
Configuration (*.ini) files. Examples of these are included with Astrobe for the target
microcontrollers used on the supported development boards.

The commands on the Astrobe Configuration menu are used to maintain and access the
configuration files. See the Configuration Files section of the Astrobe Help file for more
information.

Configuration entries include the locations of the library folders and the code and data
address ranges to be used when linking.

V10.0 Copyright © 2025 CFB Software 8 of 17
www.astrobe.com

2.5.1 Library Folders

The list of library folders to be searched is stored in the configuration file. The name of each
library folder is stored on a separate line in the configuration’s Library Pathnames textbox.
Examples are:

D:\AstrobeM0-v10.0\Lib\STM32F091
D:\AstrobeM0-v10.0\Lib\General

%AstrobeM4%\Lib\STM32F303ZE
%AstrobeM4%\Lib\General

Where, for example, %AstrobeM4% is substituted with the location of the library
and example files that you specified when you installed or last upgraded Astrobe for
Cortex-M4.

The editor, compiler, linker and builder first search the <current folder> when trying to
locate imported symbol and object files. They then search each of the library folders in the
list. The search continues until the file is found or the last folder in the list has been
searched.

<current folder> is the folder which contains the source file (*.mod) currently being compiled
or the main object file (*.arm) currently being linked.

2.5.2 Data Addresses

The configuration files have entries, Data Range and Code Range to allow you to specify the
Code and Data Flash and RAM address ranges to use when the Astrobe linker produces the
binary executable file.

Developers targeting other MCUs can create new configuration files and develop their own
hardware-specific library modules using the files and source code supplied with Astrobe as
examples.

2.6 Uploading Executable Files

Development boards supported with Astrobe allow executable files (*.bin / *.uf2) which
were created by the Astrobe Link or Build commands to be uploaded via a USB connection
from the PC to the development board. This is done using the Astrobe Upload command.

2.7 Resource Data

The usual way to process constant data in an Oberon program is to declare the values in a
CONST list or store them in a global array in the initialisation section of a module. Neither of
these methods is practical when dealing with large amounts of constant data (e.g. the
definition of a font, a bitmap image etc.).

Typically on a PC system, this sort of data would be stored in a file to be read at runtime. As
a file system is often not available on the smaller embedded systems targeted by Astrobe, a
different approach is required. The solution used is to gather together all of the relevant
data files at link time and append them to the linked executable to be stored in Flash ROM
when the program is uploaded.

V10.0 Copyright © 2025 CFB Software 9 of 17
www.astrobe.com

A library module ResData is provided to allow the programmer to conveniently access the
data from Flash ROM within the program as if it were data stored in a random-access disk
file.

Several resources can be attached to the one program; each is identified by its module
name. Typically, the steps involved in making a resource file are:

• Make a copy of the original data file

• Rename the copy to match the associated module name with the extension .res

• Move the renamed copy to the folder which contains the source code of the module

At link time, after the Astrobe linker has linked all of the object files <module>.arm into the
executable program, it looks for the corresponding resource files named <module>.res and
appends them to the executable.

If you need to associate several different resource files with one module you could create an
empty resource module for each separate resource e.g.

MODULE MyData;
END MyData.

and then include the names of those resource modules in the IMPORT list of the associated
module.

The resource file can contain any type of data. How that data is interpreted is determined by
the programmer. The only requirement is that the size of the file is a multiple of four bytes.

Study the source code of the Traps library module for an example of how to use resource
files.

V10.0 Copyright © 2025 CFB Software 10 of 17
www.astrobe.com

3 Library Modules

The following library modules are included with Astrobe:

Module name Description

Bits Bitwise operations on integers

Convert Conversion of integers to / from strings

DateTime Date and time string conversions

Error Error messages referenced by Traps

FPU (M0, M3, RP2040) Support of mathematical operations on floating point numbers

GPIO General Purpose IO pin configuration and control

Graphics Device-independent drawing of lines, circles and ellipses

I2C Reading from and writing to the I2C bus in Master mode

In Formatted ASCII text input

LinkOptions Values of options supplied by the user at link time

MAU Memory allocation unit

MCU Microcontroller-specific definitions and peripheral addresses

Main Initialisation code required by an application

Math Basic mathematical and trigonometric functions

Out Formatted ASCII text output

Put String-handling helper functions used by Convert, Reals etc.

RTC Real-time Clock time and date

Random Pseudo-random number generator

Reals Real number support and conversion to / from strings

ResData Access constant user data attached to the program by the linker

SPI Reading from and writing to the Serial Peripheral Interface bus

SYSTEM Implementation-specific low level functions

Serial Basic polled UART serial IO

Storage User-definable memory allocation / deallocation procedures

Strings General string-handling functions

Timers Microsecond and millisecond time measurement and delays

Traps Runtime error trapping

3.1 Special Library Modules

The modules FPU, MAU and SYSTEM are special i.e. they are dependent on the version of
the compiler and must follow some specific conventions.

3.1.1 FPU – Floating-point Unit

FPU is only needed for Astrobe for Cortex-M0, RP2040 and Cortex-M3. If a user module uses
mathematical operations (e.g. divide, multiply etc.) on variables that are declared as REALs
then an FPU function is called and the FPU module is automatically imported. It should not
be replaced with a user-defined module and its interface definition must not be changed.
User modules should not explicitly call an FPU function.

V10.0 Copyright © 2025 CFB Software 11 of 17
www.astrobe.com

3.1.2 MAU - Memory Allocation Unit

The module MAU contains the functions used by the system for dynamic variable memory
allocation. MAU is dependent on the version of the compiler and must follow some specific
conventions. It should not be replaced with a user-defined module and its interface
definition must not be changed.

If a user module calls the Oberon NEW function to allocate dynamic memory to a pointer
variable then MAU.New is automatically called and the MAU module is automatically
imported as if you had added it to your import list. You should not call MAU.New directly.

MAU.New calls Allocate which assigns the required number of bytes of memory from the
heap to the pointer variable.

MAU.Dispose calls Deallocate which can potentially be used to return dynamic memory that
is no longer needed to the heap.

The standard versions of Allocate and Deallocate only make the memory available for later
reuse if the block being deallocated is the most recent block to be allocated.

The source code of Allocate and Deallocate is included in the Storage library module so that
you can modify them if you need to. SetNew can be used to replace the standard version of
Allocate, and SetDispose can be used to replace the standard version of Deallocate with
ones that you have written.

3.1.3 SYSTEM

SYSTEM is a pseudo-module i.e. it contains no source code. Its functionality is implemented
entirely within the compiler. Some of the functions allow parameters of any basic type i.e.
INTEGER, SET, BOOLEAN etc. to be passed. Others allow parameters of any type. Generic
functions of this type are normally not possible to write using the Oberon language.

The presence of SYSTEM in the IMPORT list of a module indicates that the module is
implementation-dependent.

The procedure declarations and comments describing each function are included in the
definition file SYSTEM.def which is located in the Lib\General folder.

3.2 General Library Modules

All other library modules are normal i.e.

• They must be explicitly imported by modules which access their exported items.

• They could be replaced with alternative versions developed by an Astrobe user.

Some library procedures use assertions to check that the values of input parameters are
within a valid range. Invalid values result in a runtime assertion error. The error codes and
reason for the error are listed in the section titled Runtime Error Codes below.

V10.0 Copyright © 2025 CFB Software 12 of 17
www.astrobe.com

4 Debugging

4.1 Runtime Error Codes

The error codes assigned to runtime errors and assertions detected by Oberon are:

Code Reason

1 Index out of bounds

2 Type test failure

3 Source and destination arrays are not the same length

4 Invalid value in case statement

5 Attempt to call a NIL procedure variable

6 String too long or destination string too short

7 Integer division by zero or negative divisor

8, 9, 10 FPU assertions

11 Reserved

12 Attempt to dispose a NIL pointer

13..19 Reserved

20..25 Library assertions – see the Error module for definitions

26..99 Reserved

100..199 User-defined assertions

200..255 User-defined assertions with customisable trap handlers

4.2 User-defined Assertions

You can use the Oberon ASSERT function to trap an application-specific error e.g. to detect
impending stack overflow:

ASSERT(Storage.StackAvailable < minRequired, 130)

where minRequired is a user-defined value.

User-defined assertions should use error codes in the range 100 – 255 to distinguish them
from Runtime and Library errors.

Error codes 100 – 199 will display error information in the same way as the Library errors.

Error codes 200 – 255 can be used if you want to handle the error in a different way. An
example application, called UserTraps, is supplied with Astrobe to demonstrate how this can
be done.

V10.0 Copyright © 2025 CFB Software 13 of 17
www.astrobe.com

4.3 Reporting Runtime Errors

The above runtime, library and programmer-defined error conditions and assertions result in
the execution of an Arm supervisor call instruction (SVC) which calls a default trap handler in
the Astrobe library module Traps.

The trap handler reports:

• an error code or message describing what type of error it is

• the name of the module and procedure that was being executed

• the address of the instruction which caused the error

• the line number of the corresponding statement in the source code

• the values of the registers which are automatically saved at the time of the runtime
error or assertion failure

If the Stack Trace option on the Astrobe Configuration dialog was enabled when the
module was compiled, the details of the sequence of procedure calls that led to the
error are included:

The display of register values is suppressed if the procedure call Traps.ShowRegs(FALSE)
is made before the trap occurs. This is useful if the display only has a few lines and
cannot show all of the information without scrolling.

The error messages that are displayed are defined in the module Error. If there is no
message corresponding to the error code, the error code is displayed instead.
The information is reported using the standard IO functions exported by the Astrobe Out
module. By default the messages will appear on a serial terminal connected to the UART
device defined in the Main module. The trap handler then processes an infinite loop until
the system is reset.

You can modify the source code of Traps to customise the trap-handling process.

When debugging your program, you can use the register values in conjunction with the
assembly listing of the module or application to help identify the values of variables at the
time of failure.

4.4 Diagnosing Runtime Errors

When a runtime error occurs or an assertion fails, use the module name and line number
information reported by the trap handler to identify the source of the error.

V10.0 Copyright © 2025 CFB Software 14 of 17
www.astrobe.com

• Open the source code of the named module in the editor

• Use the Search > Goto command to locate the actual source line by its line number.

4.5 Diagnosing System Exceptions

Traps caused by runtime errors or assertion failures which result in Supervisor Calls (SVC) are
easy to locate as they give you the module name and line number of the offending line of
source code. Hardware-related and other system exceptions are more difficult to locate as
they only give you the module name and the address of the instruction that failed.
Fortunately they are much rarer than runtime errors.

The type of hardware system exceptions handled by the Astrobe Traps module can include
the following:

• NMI

• Hard Fault

• Memory Manager

• Bus Fault

• Usage Fault

Refer to the relevant Armv6-M (M0, RP2040, M3), ARM v7-M (M4, M7) or Armv8-M
(RP2350) Architecture Reference Manual which can be downloaded from the Arm website,
for details of which exceptions may occur and the possible causes of these exceptions.

If the exception is not caused by a secondary effect it is usually possible to identify the line
of code in your application which generated the offending instruction. To do this you need
to have:

• The runtime error message displayed when your application terminated. This will
give you the module name and exception address.

• The map file for the main module (<ModuleName>.map) which was created when
you linked / built the application. The start address of the module is listed in the
Code Address column of the map file.

• A Module Disassembler listing (Project > Disassemble Module) or an Application
Disassembler listing (Project > Disassemble Application) of the problem module.

V10.0 Copyright © 2025 CFB Software 15 of 17
www.astrobe.com

4.5.1 Using the Module Disassembler Listing:

You can calculate the offset and find the corresponding line of code in the disassembly
listing using the following formula:

 offset = exception address – start address – 4

Look in the disassembler listing of the module where the exception occurred for the
instruction with the same offset in column 2. You will see the accompanying Oberon source
line which generated that instruction.

V10.0 Copyright © 2025 CFB Software 16 of 17
www.astrobe.com

4.5.2 Using the Application Disassembler Listing:

You can calculate the offset and find the corresponding line of assembler code with that
offset in the disassembly listing using the following formula:

 offset = exception address – code start address

where the addresses are hexadecimal numbers and code start address is the first Code
Range entry on the Astrobe Configuration dialog.

The heading of that block of assembly instructions will show the name of the module and
procedure where the instruction is located.

V10.0 Copyright © 2025 CFB Software 17 of 17
www.astrobe.com

5 Compile, Link, Build and Disassemble Commands

Separate command-line programs for the Astrobe Oberon Compiler, Builder, Linker and
Disassembler which correspond to the built-in Compile, Build, Link and Disassemble
Application commands in the IDE are included.

The separate programs can be used with automatic 'build' tools, DOS-batch commands etc.
These are useful for handling a regular series of compilations and links when building
multiple configurations, multiple targets etc. They can also be useful when recompiling a
number of modules after changing the interface of a low-level imported module or
upgrading to a newer version of Astrobe.

The commands have the following parameters:

 AstrobeCompile [astrobeFolder] configFilename sourceFilename
 AstrobeBuild [astrobeFolder] configFilename sourceFilename
 AstrobeLink [astrobeFolder] configFilename objectFilename
 AstrobeDecode configFilename executableFilename

Where astrobeFolder is the (optional) name of the folder that is substituted for
the %Astrobe..% parameter in the configuration file search paths an configFileName is the
name of the configuration file containing the options to use.

5.1 Examples

AstrobeCompile D:\AstrobeM3\Configs\STM32L152.ini Lists.mod

AstrobeBuild D:\AstrobeM3\Configs\STM32L152.ini Blinker.mod

AstrobeLink D:\Astrobe D:\Astrobe\Configs\STM32L152.ini Blinker.arm

AstrobeDecode D:\AstrobeM3\Configs\STM32L152.ini Blinker.bin

5.2 Command Return Codes

If the command executes without any compiler or linker errors it returns zero otherwise it
returns 1. An example of a DOS batch script for use with Astrobe for RP2040, which uses
these return values is:

REM
REM Rebuild Libraries
REM
SET rootdir=C:\AstrobeRP2040
SET configs=%rootdir%\configs
SET lib=%rootdir%\lib
SET build="C:\Program Files\Astrobe for RP2040\AstrobeBuild.exe"
REM
cd %lib%
del /s *.arm
del /s *.smb
%build% %configs%\PiPico.ini %lib%\General\Build.mod
if errorlevel 1 goto ErrorExit
REM
%build% %configs%\PiPico.ini %lib%\PiPico\Build.mod
if errorlevel 1 goto ErrorExit
REM
echo No errors detected
goto OK
:ErrorExit
echo Errors detected
:OK

	Astrobe
	1 Introduction
	2 File Descriptions
	2.1 Example
	2.2 Linking and Loading
	2.3 Startup Code
	2.4 Library Folders
	2.5 Configuration Files
	2.5.1 Library Folders
	2.5.2 Data Addresses

	2.6 Uploading Executable Files
	2.7 Resource Data

	3 Library Modules
	3.1 Special Library Modules
	3.1.1 FPU – Floating-point Unit
	3.1.2 MAU - Memory Allocation Unit
	3.1.3 SYSTEM

	3.2 General Library Modules

	4 Debugging
	4.1 Runtime Error Codes
	4.2 User-defined Assertions
	4.3 Reporting Runtime Errors
	4.4 Diagnosing Runtime Errors
	4.5 Diagnosing System Exceptions
	4.5.1 Using the Module Disassembler Listing:
	4.5.2 Using the Application Disassembler Listing:

	5 Compile, Link, Build and Disassemble Commands
	5.1 Examples
	5.2 Command Return Codes

