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1. History and Introduction 

In late 1997 we decided to program the control system for a model helicopter in the language 
Oberon. At the same time, the decision was made to use DEC’s StrongARM processor DS1035 
as the core of the system. An immediate consequence was the necessity of an Oberon 
compiler for that processor and, since none was available, to build one. An important objective 
was to demonstrate the language’s suitability to express programs for real-time applications, 
requiring efficient and predictable performance, and encouraging structured and modular 
design. 

Although compiler technology is a reasonably mature subject, most engineers hesitate to build 
their own compilers, particularly if manpower is scarce. The principal reason is the belief that 
compilers are inherently complex and large programs. At least since the advent of Reduced 
Instruction Set Computers (RISC), there is good reason for this belief. The credo of this 
technology is that computer architectures must concentrate on the basics, and compilers would 
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do the rest, irrespective of complications. We believe that also languages should concentrate 
on the essentials and avoid complexity through regularity. 

Instead of choosing the usual path of using tools for syntactic analysis and for code generation 
as black boxes, I decided to build the compiler alone and from scratch. This was not 
unreasonable in view of my previous experience in compiler construction. Certainly, the goal of 
achieving highly optimized code had to be abandoned. Straight-forward code generation would 
have to do. A first version of the compiler was to be available within a few months. Hence, I 
decided to build the compiler along the lines of a simple single-pass compiler with on-the-fly 
code generation as elaborated in [1]. Having a scanner and a parser already available saved a 
few days of labor. But the crucial part, without doubt, is code generation. We also decided to 
implement a subset of Oberon, and to drop features that seemed superfluous for the task at 
hand. 

Therefore, we will report on the conventional part, the scanner and the parser, only scantily. 
Instead, we discuss in more detail our approach to achieving the efficiency and economy that 
an engineer building a real-time control system demands. He must be able to rely on 
predictable performance, a requirement more fundamental than mere efficiency. Modern 
processors do not perform very well in this respect. Instruction pipelines and caches speed up 
computations considerably, but still yield worst cases that let this gain be of doubtful value. 
Sophisticated compilers, rearranging and contorting code in obscure ways add to this misery. In 
contrast, a compiler that produces code according to a few, obvious rules is a preferable 
solution. We feared that a suboptimal performance of the generated code might be a severe 
handicap. We even introduced a feature that was specifically tailored to the architecture to 
produce efficient, sequential array access. In hindsight, the fear of insufficient performance was 
unjustified. Even the special speed-feature was dropped. Instead, the great speed of the 
compilation process is an invaluable gain in a development environment. 

More recently, I added a third goal, namely to separate the language-dependent and target-
independent parts, such as scanning and parsing, more systematically from the language-
independent and target-dependent parts, such as code generation. If at all possible, they 
should be separated into different modules. It was in particular this third aim that increased the 
amount of work. In fact, it caused me to write a practically new compiler. 

The main features that had been omitted from the subset and now had to be added, were type 
extensions (inheritance) with type test and type guards, complete index range checking for 
open arrays, the type SET and its operators, the case statement, and various other features, 
such as copying and comparing arrays, strings, and import/export of variables. 

A revision of Oberon as defined in 1988 was issued in 2007, with several restrictions and 
eliminations in the sense of a cleanup. We here summarize the main changes of the revision 
called Oberon-07: 

1. No access to intermediate-level objects. 
2. The basic types SHORTINT and LONGINT are eliminated, and with it type inclusion. 
3. The loop and exit statement are eliminated. 
4. The with statement is eliminated. 
5. Variables are exported in read-only mode. 
6. Case labels must be non-negative integers, like array indices. 

We also summarize the main features that were added and therefore must be considered as 
language extensions particular for this implementation. 

1. Leaf procedures and register variables 
2. Interrupt handlers 

2. The Structure of the Compiler 

The compiler is structured conventionally and conveniently into modules according to the major 
tasks of scanning the source text, parsing and type checking, and code generation. In addition, 
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a module is provided containing the definition of data types used throughout the entire 
compiler. These are in particular the types Object, denoting elements of the “symbol table”, and 
Type, describing the types of data and functions. This module also contains routines for 
constructing and for searching the data structure. More significantly, it also contains the 
machinery for generating and loading symbol files for separate, type checked compilation of 
modules. 

Module Data owned source  lines chars code (bytes) 

Parser (OSAP) (command module) 1000 40K 21.5K  
Generator (OSAG) type Item, target code, registers 1400 50K 26.8K  
Base (OSAB) types Object and Type, symbol table   440 16K   7.7K 
Scanner (OSAS) Source text, table of keywords   280 10K   5.8K 
Total  3120 116K 61.8K 

The parser imports from all other modules, in particular the symbols from the scanner, the basic 
types from the base, and the code generator procedures from the Generator. The generator in 
turn imports again the types from the base, and from the scanner the procedure Mark to report 
errors. For further explanations, we refer to [Wirth95, Compiler Construction, Wirth95, Project 
Oberon]. 

3. The Scanner (OSAS) 

The task of the scanner is the recognition of language symbols (tokens) in the source text. The 
tokens are identifiers, integers, real numbers, strings, and other symbols. The latter are either 
special characters, character pairs, or keywords: 

+  := ARRAY IMPORT THEN 
-  ^ BEGIN IN TO 
*  = BY IS TRUE 
/  # CASE MOD TYPE 
~ < CONST MODULE UNTIL 
&  > DIV NIL VAR 
.  <= DO OF WHILE 
,  >= ELSE OR 
;  .. ELSIF POINTER 
|  : END PROCEDURE 
( )  FALSE RECORD EXIT* 
[ ] FOR REPEAT LOOP* 
{  } IF RETURN WITH* 

(The symbols marked with an asterisk are not used in Oberon-SA, but they are nevertheless recognized by the scanner 
as keywords). 

The keywords are contained in a hash table. The hash function is chosen such that most 
keywords are recognized in the first try, and only a few require two tries. The source text is 
passed as a parameter to the scanner by calling Init. The source file is then attached to the 
rider R which keeps track of the current reading position. There is no backtracking. Procedure 
Get delivers the next symbol in the source text. Procedure Mark is used to issue error 
messages which refer to the current scanning position. Get and Mark are the important 
operators of this scanner, which shows a remarkably thin interface. 

The global variables ival, rval, slen, id, and str are what might be called secondary results of 
procedure Get, when the last symbol delivered was an integer, a real number, a character or a 
string. slen indictes the number of characters in the string (including the terminating null 
character). 

Further global variables are the reader R and the writer W, representing the source code and 
the diagnostic output. The latter is placed in the scanner module in order to correlate the 
diagnostic messages with the position reached in the source text. 

Apart from all the language symbols, the scanner exports the following entities: 
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CONST IdLen = 32; 

TYPE Ident = ARRAY IdLen OF CHAR; 

VAR ival, slen: LONGINT;  (*attributes of symbol just read*) 
 rval: REAL; 
 error: BOOLEAN; 
 id: Ident;  (*for identifiers*) 
 str: ARRAY 60 OF CHAR;  (*for strings*) 
 errcnt: INTEGER; 

PROCEDURE Copy(VAR ident: Ident); 
PROCEDURE Mark(msg: ARRAY OF CHAR); 
PROCEDURE Get(VAR sym: INTEGER); 
PROCEDURE Init(T: Texts.Text; pos: LONGINT); 

The scanner skips comments, sequences of characters enclosed by comment brackets. 
Comments may be nested. Nesting is handled by a recursive comment recognizer. One 
anomaly in the language is the symbol “..” used in set denotations such as {5 .. 9}. It would 
require a look-ahead of more than one character to avoid conflicts with the decimal point in 
numbers. In order to retain the one-character look-ahead scheme, it is required that a space 
must lie between an integer and a “..” symbol. 

The scanner is one of the few routines where a case statement is highly valuable. 

4. The Parser (OSAP) 

The parser is the “main module” of this compiler. It exports only the (parameterless) command 
Compile that can be activated by a click in any text. According to the Oberon system’s 
conventions, it comes in three variants for indicating the text to be compiled: 

OSAP.Compile @ most recently selected text 
OSAP.Compile * text in marked viewer 
OSAP.Compile P0.Mod P1.Mod ……. Pn.Mod~ 

The syntax of Oberon has been carefully designed such that texts can be parsed by the simple 
method of top-down parsing with a single symbol look-ahead. (Note that the total look-ahead is 
one symbol (by the parser) plus one character (by the scanner). For parsing we use the 
technique of recursive descent. Essentially every non-terminal class is represented by a 
parsing procedure. They are, in descending order: 

Module 
ProcedureDecl 
Declarations 
Type 
Signature 
FPSection  (Formal Parameter Section) 
FormalType 
RecordType 
ArrayType 
IdentList 
StatSequence 
expression 
SimpleExpression 
term 
factor 
set 
element 
ParameterList 
Parameter 
selector 
TypeTest 

Note that identifiers, numbers, strings are considered as “terminal” symbols and are recognized 
and delivered by the scanner. 
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While parsing declarations, a data structure conventionally called “the symbol table” is 
constructed. It is the dictionary of all declared identifiers together with the attributes of the 
objects introduced. The presence of the table is necessary for type consistency checking, 
beside parsing the second important task of this module. 

This structure, however, is not a simple table, but a complex graph with its elements linked by 
pointers. It contains two types of elements: Objects represent named, declared entities, such as 
constants, variables, procedures etc. Types represent the types of objects. Note that many 
objects may be of the same type, and hence a representation using pointers is highly 
appropriate in this case. For details we refer to [2]. 

The entities declared in a scope are represented in a linked list (field next) rather than a tree. Its 
first element is a header. The headers of open scopes are also linked (anc) and form a 
pulsating stack. See procedures OpenScope and CloseScope in module OSAB.. 

Objects are of various classes, distinguished by the record field class. Likewise Types are 
distinguished by their form, represented by the field form. The possible values of these 
attributes are listed below. Types contain a field base. Its meaning is indicated below: 

Classes 
1 Const constants 
2 Var variables (or value parameters) 
3 Par (reference) parameters 
4 Field record fields 
5 Type types 
6 SProc predefined, in-line procedures and functions 
7 Mod modules 
8 Reg register variables 
9 RegI (reference) parameters in registers 

Forms 
1 Byte byte (available as formal type SYSTEM.Byte) 
2 Bool Boolean 
3 Char character 
4 Int integer 
5 Real real number 
6 Set set 
7 Pointer pointer base = type of referenced record 
8 NilType 
9 NoType e.g. for “result” of proper procedures 
10 Proc procedure base = result type  
11 String string 
12 Array array base = element type 
13 Record record base = type of which this type is an extension 

The declarations of Object and Type are defined in the service module OSAB (B for base). The 
same holds for the constants identifying classes and forms as shown above. 

Name = ARRAY NameLen OF CHAR; 
Object = POINTER TO ObjDesc; 
Type = POINTER TO TypeDesc; 

ObjDesc = RECORD 
 class, lev, expo: INTEGER; 
 rdo: BOOLEAN;   (*read only*) 
 next, anc: Object; 
 type: Type; 
 name: Name; 
 val: LONGINT 
END ; 

TypeDesc = RECORD 
 form, ref: INTEGER;  (*ref is only used in exporting*) 
 nofpar: INTEGER;  (*for procedures; extension level for records*) 
 len: INTEGER;  (*for arrays, len < 0 => open*) 
 dsc, typobj: Object; 
 base: Type;  (*for arrays, records, pointers*) 
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 size: LONGINT  (*in bytes; always multiple of 4, except for Bool and Char*) 
END  

While processing declarations of variables, addresses are associated with them, that is, 
storage is allocated. One might consider this as belonging into the module which contains all 
target-dependent matters. However, since allocation occurs in a strictly sequential manner, this 
task is machine-independent, at least if we consider byte-addressing a common standard. The 
running address is the global variable dc (data counter). 

The field (attribute) lev denotes the level of nesting of the procedure (scope), in which the 
object is declared. Level 0 contains the global, statically allocated objects. Expo specifies 
whether or not the object is exported, name is the identifier denoting the object, type is the 
pointer referencing the object’s type, and val denotes the object’s value, if it is a constant, or its 
address, if it is a variable or procedure. Procedures are considered as constants of a procedure 
type. 

In the case of Types, the attribute nofpar specifies the number of parameters of a procedure 
type, or the extension level in the case of records. Len indicates the length (number of 
elements) of an array. The value -1 is used to indicate that the array is open, i.e. that the length 
is unknown. In the case of a record type, len denotes the address of the corresponding type 
descriptor (see type extensions). The field dsc (descendant) points to the list of fields in the 
case of a record type, or to the list of parameters in the case of a procedure. 

The attribute size indicates the number of bytes that an object of this type occupies. It is always 
a multiple of 4, except for the basic types Boolean and Char, where the size is 1. The field ref is 
used only while constructing the symbol file for exporting (see Ch. 24). The data structure 
corresponding to the following set of declarations is shown in Fig. 1. 

TYPE R = RECORD f, g: INTEGER END ; 
VAR x: INTEGER; 
 a: ARRAY 10 OF INTEGER; 
 r, s: R; 

Fig. 1  Example of a “symbol table” 
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The parser module also performs the important task of type consistency checking, which, like 
parsing itself, is target code independent. It is the symbol table, retaining the properties of the 
declared objects, that makes type checking possible.  

All parsing procedures carry one or more parameters of type Item. These procedures not only 
parse the text, but also deliver an encoded description of the parsed construct, such as an 
expression, in the form of the resulting Item record. The type Item is closely related to the type 
Object. Like an Object, an Item specifies its type, and with it the parser performs type checking. 
In contrast to an object, an item has no name, but other attributes used for code generation on-
the- fly. The type is defined in module OSAG, as are all procedures operating on items. Details 
are explained in subsequent chapters on expression evaluation. 

A very essential difference between Objects and Items is that the latter are never referenced 
via pointers, but are strictly bound to procedures and therefore reside on the processing stack. 
This “detail” significantly enhances the efficiency of the compiling process, because no storage 
management is required for Items. Whereas the “symbol table” with its Objects is constructed 
during the processing of declarations, and thereafter remains unchanged, Items rapidly come 
and go during the processing of statements and expressions. This is where efficiency counts. 

The global variables check, leaf, and int are state variables indicating whether array bound 
checks should be generated or omitted, and whether a normal, a leaf, or an interrupt procedure 
is being compiled. 

5. The ARM-Architecture 

The ARM-architecture represents closely the classic Reduced Instruction Set Computer with an 
Arithmetic Logic Unit and an array of 16 general-purpose registers at its core. The ALU 
performs logical operations (not, and, or, xor) and arithmetic operations (add, subtract, multiply, 
but not divide, on integers). The second operand of the ALU can be selected from a register or 
from the instruction (immediate operand). A unique and most useful feature is the barrel shifter. 
It allows the second operand to be arbitrarily shifted before entering the ALU. This is highly 
convenient, because address computations often require shifts by powers of 2. Register 15 is 
the program counter (PC). 

The instructions are classified according to their format and function as follows: 

0. Register operations: op, d, s0, s1, sc, md R[d] := R[s0] op shift(R[s1], sc, md) 
1. Register immediate: op, d, s, imm R[d] := R[s] op imm 
2. Load/store: op, r, b, a R[r] := M[R[b]+a]; M[R[b]+a] := R[r] 
3. Load/store:  op, r0, r1, r2, sc, md R[r0] := M[R[r1]+shift([R[r2], sc, md)] 
  M[R[r1]+shift([R[r2], sc, md)] := R[r0] 
4. Load/store multiple: op, r, set sets of registers from/to memory 
5. Branch condition, offset PC := PC + offset, if condition 
6. Miscellaneous, including traps 

The basic ALU operations include copying, arithmetic and logical operations. The shift is 
determined by a shift count sc between 0 and 31 and a shift mode md (logical left, logical right, 
right with sign extension, and rotate right. All instructions may optionally set the condition code 
in the program status register (PSR). Of interest are the Z-bit, indicating whether a result is 0, 
and the N-bit, reflecting its sign bit. Unfortunately, the condition code is not set by instructions 
loading from memory. Fig. 2 shows a block diagram of ALU and Control Unit. 
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. 
Fig. 2. Architecture of the ARM-core 

True to the RISC-strategy, there exists only one addressing mode. The address is an offset 
added to a (base) register. The offset can be either a constant (immediate field) or a second 
register. In combination with the facility to increment or decrement this register before or after 
the memory access, this option is most useful for procedure calls (pushing parameters on the 
stack) and for copying and comparing arrays and strings (see the respective sections). 

One of the unpleasant properties of this architecture is the shortness of the field for immediate 
values. It is only 8 bits long, and thus can specify values between 0 and 255 only. In fact, the 
field is 12 bits long, but 4 bits are used for a rotation count. The actual value is thus determined 
by the two fields n and x as “x rotated by 2n bits”. This nasty feature appears as a mistake 
when one realises that every instruction has a condition field which is rarely used except for 
branch instructions. The same unpleasantness appears in load/store instructions, where the 
offset field is only 12 bits long. Moreover, two bits are “lost”, because data come in words, 
hence having addresses which are multiples of 4, i.e. with two low-order zero bits (except for 
byte-data). 

Branch instructions, on the other hand, feature a large, PC-relative offset field of 24 bits. 
Register R15 is the program counter. For procedure calls, a branch and link instruction is used 
that deposits the current PC in register R14. Upon return, that value is moved back into R15 
causing a return jump. In our implementation register R13 is used as the stack pointer SP, and 
R12 as the frame pointer FP. As a result, only registers R0 – R11 are available for computations 
on data, which proves to be quite sufficient. 

6. Storage Layout, Variable Allocation, and Procedure Calls 

Every module occupies a storage block for its global (static) variables and, following it, a block 
for the program code and for constants. Together these blocks are said to constitute a module 
frame. A separate stack constitutes the workspace, a pulsating stack of procedure frames 
containing the local variables and parameters (see Ch. 16). 
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Variables and parameters are allocated sequentially in their respective block with negative 
offsets. The running counter is dc, a global variable of module OSAP, which apart from parsing 
also handles data space allocation. Global variables are addressed relative to PC, local 
variables and parameters relative to FP. (In the case of globals, this often leads to large offsets, 
which are complicated to represent in the ARM-architecture). Note that based addresses need 
not be changed during program loading. In fact, the loader affects only cross-module 
references. 

Code is allocated in the global array code in module OSAG. The running index is pc, also 
global in OSAG. The format of instructions is represented by the various Put procedures, one 
or even several for each instruction class. Their parameters represent the instruction fields. 

PROCEDURE Put0(op, dst, src0, src1: LONGINT);   (*register operation*) 
PROCEDURE Put0a(op, dst, src0, src1, shmd, shcnt: LONGINT);   (*register operation with shift*) 
PROCEDURE Put0b(op, dst, src0, src1, shmd, shreg: LONGINT);   (*register operation with shift cnt from reg*) 
PROCEDURE Put0c(op, dst, src0, src1, src2: LONGINT);  (*multiply*) 
PROCEDURE Put1(op, dst, src, imm: LONGINT);  (*register operation with immediate*) 
PROCEDURE Put1a(op, dst, src, imm, rot: LONGINT);  (*register operation with rotated immediate*) 
PROCEDURE Put2(op, reg, base, offset: LONGINT);  (*Load/store with offset literal*) 
PROCEDURE Put3(op, reg, base, offreg, shift: LONGINT);  (*Load/store with offset from register*) 
PROCEDURE Put4(op, base: LONGINT; regs: SET);  (*Load/Store multiple*) 
PROCEDURE Put5(cond, offset: LONGINT);  (*Branch conditional*) 
PROCEDURE Put5a(offset: LONGINT);  (*Branch and Link*) 
PROCEDURE Put6(cond, num: LONGINT);  (*SWI conditional*) 

Oberon-SA features the special facility of register-variables. Procedures can be explicitly 
designated as leaf-procedures, if they do not invoke other procedures, i.e. are leafs in the tree 
of calls. In this case, variables of types INTEGER and SET are automatically allocated in 
registers rather than in memory. This speeds up their access. The register bank is thus divided 
into three parts, with regs and RH being global variables in OSAG, The set variable regs 
indicates which registers are allocated for intermediate results in expressions. 

R[0] … R[RH-1] registers for temporary results 
R[RH] … R[11] parameters and register variables 
R[12] … R[15] dedicated registers (FP, SP, LNK, PC)  

Every call of a procedure (except in-line procedures) generates a new frame in the stack where 
local variables are allocated. Its size is determined by the local declarations. This implies that 
variables are addressed by offsets relative to a frame address that is held in a register for 
reasons of efficiency. This register is called the frame pointer (FP). Global variables, however, 
have fixed, static addresses. In order to avoid the need for another base register, addresses of 
global variables are offsets relative to the program counter (PC), i.e. relative to the instruction 
addressing the global variable. Further details about procedure calls and storage layout are 
explained in section 16. 

7. Constant- and Address Generation 

Constants are placed in the immediate field of instructions if possible. However, this field is 
unfortunately only 8 bits wide, and hence, although the vast majority of constants lies between 
0 and 255, requires that constants may be placed in memory and be accessed by load 
instructions. Again unfortunately, also load instruction feature a short offset field (12 bits). Thus 
“outplaced” constants are allocated following the end of each procedure. The immediate field is 
augmented by a rotation count field (4 bits). Hence, certain constants can be placed into the 
immediate field of instructions, even if their value is larger than 255. 

Strings are insofar exceptional cases, as they are structured constants and may require several 
words of storage. Therefore, they are always “outplaced”. Strings are terminated by a null 
character and are always allocated in an integral number of words. (see procedures enterIC, 
enterStr, ScaleConst, and FixupConstants in OSAG). 

The short offset fields in ARM instructions are a nasty problem for the compiler designer. The 
lesson for the programmer is that none of his procedures should become very long. The 
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compiler designer, however, has to take care also of the unpleasant albeit rare cases. He 
resorts to the disliked solutions of either composing offsets through multiple instructions or 
through indirect addressing (procedures Put1 and Put2). 

The following example shows a source text and the generated code, as explained above. 
(Note: Branch instructions have PC-relative word offsets, and the PC is always 2 words ahead) 

MODULE M; 
 VAR a, b: INTEGER; a: -4, b: -8 
 PROCEDURE P(x, y: INTEGER); x: -4, y: -8 
  VAR z: INTEGER; z: -12 
 BEGIN z := x + a 
 END P; 
BEGIN P(5, 256); P(-10, 53248) 
END M. 

   4  E51CB004 LDR  R11 FP -4 x  (local) 
   5  E51FA020 LDR  R10 PC -32 a  (global) 
   6  E09BB00A ADD  R11 R11 R10 x+a 
   7  E50CB00C STR  R11 FP -12 z  (local) 

  12  E3A0B005 MOV  R11  5 
  13  E3A0AC01 MOV  R10  256 
  14  EBFFFFF1 BSR  -15 call at 1 

  15  E3E0B009 MVN  R11  -10 
  16  E3A0AA0D MOV  R10  53248 [0000D000] 
  17  EBFFFFEE BSR  -18 call at 1 

8. Operands and Selectors 

The parsing process has decomposed complex expressions into subexpressions consisting of 
an operator with its operands. We may therefore restrict our attention to single operators and 
their operands. The simplest case is when (both) operands are constants. Then the operation is 
performed by the compiler. This, however, is here done only for integer expressions. In all other 
cases we may consider the operation as being deferred to “execution-time”, as being replaced 
by the emission of instructions that later perform the operation. A reason for this is to avoid 
rarely beneficial complications of the compiler, another is to avoid overflow traps during 
compilation. 

During the evaluation of expressions, intermediate results appear. For example, in (x+y) * (x-y) 
there exist two intermediate results, x+y, and x-y. They are also “objects”, but are anonymous. 
They pop up and disappear in a first-in-last-out order, and they are local to the procedure that 
parses them (factor, term, simple expression, expression). As explained above, they are similar 
to objects, but have no name. We call them Items. All parsing procedures in expressions carry 
items as parameters: 

TYPE Item = RECORD 
 mode: INTEGER; 
 type: OSAB.Type; 
 a, b, r: LONGINT; 
 rdo: BOOLEAN  (*read only*) 
END ; 

The attribute mode corresponds to the attribute class of Objects. The meaning of fields r, a, b 
(hidden in OSAG) depends on the item’s mode: Together they hold the location (address) of 
the item. It is noteworthy that the meaning of the attribute class now transforms itself into that of 
an addressing mode with the correspondences indicated in the following table: 

Mode r a  b adr mode    
Const - value  immediate adr value = a 
Var base offset  direct adr adr = R[r] + a 
Par base offset0 offset1 indirect adr adr = Mem[R[r]+a] + b 
Reg regno   register value = R[r]. 
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During the processing of an expression, all operands are represented by items. These undergo 
various state transitions with the ultimate destination of the mode Reg, because it is the 
characteristic of RISCs that operations are always performed on registers. 

Objects are created from declarations. During the processing of statements, they are 
transformed into items by procedure MakeItem. These are objects representing constants, 
variables and parameters with the modes Const, Var, and Par. The mode transitions are 
accompanied by the emission of instructions, and they may be straightforward as in the case of 
simple variables, or complex, if selectors are present, such as indices, record field selectors, or 
dereferencing operations. In these cases, procedures Index, Field, and Deref (in OSAG) 
perform additional mode transformations and emissions of instructions. In this course, 
additional modes may arise that are not determined by language constructs, but rather by the 
target computer’s addressing modes. In the case of the ARM architecture, there are only few of 
them, namely RegI, RegX, CC, and Stk: 

Mode r a  b    
RegI regno offset  (register indirect) adr = R[r] + a  
RegX reg0 reg1 scale (register indirect) adr = R[r] + R[a] * 2↑b 
CC cond Fchain Tchain (condition code) 
Stk SP   (top of stack) adr = SP  (push, pop) 

The special mode CC signifies that the denoted value is in the special register CC that is part of 
the PSR. This will need special attention when explaining the processing of relations and 
Boolean operators. Note that the modes Var and RegI are actually identical. The difference is 
only that in the former case the register field r denotes a base register, PC or FP, whereas in 
the latter part r denotes any work register. Items with modes Reg, CC, and Const may also 
result from operators and relations. 

The following procedures (in OSAG) take part in the transformation of items: 
PROCEDURE MakeConstItem(VAR x: Item; typ: OSAB.Type; val: LONGINT); 
PROCEDURE MakeRealItem(VAR x: Item; val: REAL); 
PROCEDURE MakeStringItem(VAR x: Item; VAR s: ARRAY OF CHAR); 
PROCEDURE MakeItem(VAR x: Item; y: OSAB.Object); 

PROCEDURE Field(VAR x: Item; y: OSAB.Object);   (* x := x.y *) 
PROCEDURE Index(VAR x, y: Item);   (* x := x[y] *) 
PROCEDURE DeRef(VAR x: Item);   (* x := x^*) 

The first group transforms (copies) Objects into Items, the latter transform items from one state 
to another while generating code. This will now be explained in further details with examples. 
Because an operand must be in a register in order that an arithmetic or logical operation can be 
applied, we first show how an operand is transferred into a register. This is the task of 
procedures load(x), loadAdr(x), and loadCC(x). 

For each such procedure its task is described by the set of mode transitions and issued 
instructions. For simple variables the corresponding item is in mode Var. Before applying an 
operator, the item is loaded into a free register r’ by procedure load: 

mode args  result args emitted instructions 
Const a  Reg r’ MOV r’, a 
Var r, a  Reg r’ LDR r’, [r, a] 
Par r, a, b  Reg r’ LDR r’, [r, a]; LDR r’, [r’, 0] 

Consider the following example. Here, the reader needs to look at the program of module 
OSAG: 

MODULE M; 
 PROCEDURE P(x: INTEGER; VAR y: INTEGER); 
  VAR z: INTEGER; 
 BEGIN z := 10; z := (x + y) * (x - y) 
 END P; 
END M. 

mode args  result args emitted instructions issued by  
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Const 10  Reg 11 MOVI R11 10 load 
Var FP, -12    STR R11 FP -12 Store 

Var FP, -4  Reg 11 LDR R11 FP -4 load 
Par FP, -8    LDR R10 FP -8 load 
   Reg 10 LDR R10 R10  0 load 
   Reg 11 ADD R11 R11 R10 AddOp 
Var FP, -4  Reg 10 LDR R10 FP -4 load 
Par FP, -8    LDR R9 FP -8 load 
   Reg 9 LDR R9 R9  0 load 
   Reg 10 SUB R10 R10 R9 AddOp 
  Reg 11 MUL  R11 R11 R10 MulOp 
Var FP, -12   STR  R11 R12 -12 Store 

Registers must be allocated in a strict stack discipline. This is necessary because parameter 
lists are built up in the register stack and released when the call instruction is issued. Allocation 
of a fresh register for an intermediate result would be straightforward, were it not for the facility 
of register variables. A typical case is the evaluation of, e.g. x+y. Register bookkeeping must 
release the registers holding operands x and y, and then allocate a register for the sum. 
Release must be supressed, however, if the operand is a register variable or a system register. 
The following auxiliary procedures serve as convenient abbreviations: 

Release(u); GetReg(r)  GetReg1(r, u)  
Release(v); Release(u); GetReg(r)  GetReg2(r, u, v) 

When operands have selectors, such as indices for arrays, field identifier for records, etc., the 
path of an operand to a register is longer. Here we show the various state transitions for the 
three selector kinds index, field designation, and dereferencing. 

1. Field designator  (x.y,  procedure Field) 
mode args  result args emitted instructions 

Var a  Var a+y.val none   (y.val = field offset) 
Par a, b  Par a, b+y.val none 
RegI a  RegI a+y.val none 
RegX r,a,b  RegI a := y.val ADD r’, r, a LSL b 

The address of a record field is the sum of the record’s address and the field offset. Here we 
encounter the item mode RegX. It occurs when both the item’s address and the offset are in 
registers. In this case, the ARM architecture even allows the offset to be shifted, i.e. multiplied 
by a power of 2. This is most convenient, as the instruction allows to multiply and add in one. 

2. Dereferencing  (x↑,  procedure Deref) 
mode args  result args emitted instructions 

Var r, a  Par r, a, b=0 none 
Par r,a,b  RegI r, a LDR r’, r, a 
RegI r, a  RegI r, a=0 LDR r’, r, a 
RegX r, a, b  RegI r, a=0 LDR r’, r, a LSL b 

The address of the pointer variable is replaced by its value, the address of the dereferenced 
variable. 

3. Index  (x[y],  procedure Index) 
mode args  result args emitted instructions 

Var r, a  RegI r, a, b=0 MUL r’, r, y.r, r”  |  ADD r’, r, y.r LSL s 
RegI same    r” contains element size previously loaded 
RegX same    y.r = index value previously loaded 

The address of an indexed variable is the sum of the array’s address and the index times the size 
of the elements. Its computation therefore requires a multiplication and an addition. Both 
operations can be combined in a single multiply/add instruction. In the case of several indices, 
each index contributes a term in the sum. Given an array 

a: ARRAY s0, s1, … , sn OF T 
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adr(a[i0, i1, … , in])  =  adr(a) + i0*n0 + i1*s1 + … + in*sn 

The multiply/add instruction can be replaced by a single add/shift instruction, if the size s is a 
power of 2. (Ri LSL n stands for Ri * 2n). 

Code generated for the various selectors is shown in the following brief example.  Note that the 
instruction pairs CMP, SWI serve for checking the validity of index values (array bound checking). 

MODULE M; 
 TYPE 
  Record = RECORD u, v, w: INTEGER END ; 
  Pointer = POINTER TO Record; 
  Array = ARRAY 8 OF INTEGER; 
  Matrix = ARRAY 4, 8 OF INTEGER; 
 PROCEDURE P; 
  VAR i, j, k: INTEGER; 
   r: Record; p: Pointer; a: Array; M: Matrix; 
 BEGIN k := r.v; k := p^.w; k := a[i]; k := M[i, j]; k := M[3, 6] 
 END P; 
END M. 

I -4 adress of variable, based on frame pointer FP 
j -8 
k -12 
r -24 
p -28 
a -60 
M -188 

   7  E51CB014 LDR  R11 FP -20 r.v 
   8  E50CB00C STR  R11 FP -12 k 

   9  E51CB01C LDR  R11 FP -28 p^.w 
  10  E59BB008 LDR  R11 R11 8 
  11  E50CB00C STR  R11 FP -12 

  12  E51CB004 LDR  R11 FP -4 i 
  13  E35BBF02 CMP  R11 R11 8 
  14  2F000001 SWI 
  15  E08CB10B ADD  R11 FP R11 LSL  2 a[i] 
  16  E51BB03C LDR  R11 R11 -60 
  17  E50CB00C STR  R11 FP -12 

  18  E51CB004 LDR  R11 FP -4 i 
  19  E35BBF01 CMP  R11 R11 4 
  20  2F000001 SWI 
  21  E08CB28B ADD  R11 FP R11 LSL  5 M[i] 
  22  E51CA008 LDR  R10 FP -8 j 
  23  E35AAF02 CMP  R10 R10 8 
  24  2F000001 SWI 
  25  E08BB10A ADD  R11 R11 R10 LSL  2 M[i][j] 
  26  E51BB0BC LDR  R11 R11 -188 
  27  E50CB00C STR  R11 FP -12 

  28  E51CB044 LDR  R11, FP, -68 M[3][6] 
  29  E50CB00C STR  R11 FP -12 

Constant expressions are evaluated by the compiler, and so are constant addresses, such as 
indices with constants. This results in a substantial shortening of code. In order to achieve it, 
the loading of values must be delayed until it is no longer avoidable. 

A rather special case is the indexing of a formal array parameter. Here the address of the 
element a[k] is adr(a) + k*elsize, where the address is stored in a parameter location and needs 
to be loaded into a register. The address being the sum of two registers, it is possible to use the 
ARM’s load or store instruction with 2 register fields rather than a register plus an offset. This 
facility is the reason for the introduction of the RegX item mode. The following example shows 
the use of this mode, saving an ADD instruction. (The instruction pairs for index checking are 
omitted). 
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PROCEDURE P(VAR x, y: ARRAY OF INTEGER); 
 VAR k: INTEGER; 
BEGIN x[k] := y[k] 
END P; 

   4  E51CB014 LDR  R11 FP -20 k 
   8  E51CA004 LDR  R10 FP -4 @x 
   9  E51C9014 LDR  R9 FP -20 k 
  13  E51C800C LDR  R8 FP -12 @y 
  14  E7989109 LDR  R9 R8 R9 LSL  2 
  15  E78A910B STR  R9 R10 R11 LSL  2 

9. Integer Expressions and Local Code Improvements 

Code generation for all expressions is based on the operand loading principles explained so 
far. It is straightforward. The RISC architecture requires all operands in registers, and deposits 
results also in registers. The instructions used are ADD, SUB, and MUL. ADD and SUB come 
in two forms, namely with the second operand in a register or as an immediate field. This 
makes compilation significantly more complicated, because (1) the field holds only small values 
(8 bits), (2) the small constant may be shifted (and become a large constant), and (3) the value 
is unsigned, hence possibly requiring subtraction in place of addition. 

The procedures involved in generating integer arithmetic instructions are: 
PROCEDURE Neg(VAR x: Item);   (* x := -x *) 
PROCEDURE AddOp(op: INTEGER; VAR x, y: Item);   (* x := x ± y *) 
PROCEDURE MulOp(VAR x, y: Item);   (* x := x × y *) 
PROCEDURE DivOp(op: INTEGER; VAR x, y: Item);   (* x := x div/mod y *) 
PROCEDURE Abs(VAR x: Item);   (* x := ABS(x) *) 

The ARM instruction set does not contain division, because it is a rarely used operation. Hence, 
division is implemented as a sequence of instruction including a loop. It uses the following 
algorithm for non-negative operands with a double register for the pair <r, q>: 

PROCEDURE Div(x, y: INTEGER); 
 VAR r, q, i: INTEGER; 
BEGIN q := x; r := 0; i := 32; 
 REPEAT q := 2*q; r := 2*r; 
  IF r >= y THEN r := r-y; q := q+1 END; 
  i := i - 1 
 UNTIL  i = 0; 
 (*q = quotient, r = remainder*) 
END Div 

The statement z := x DIV y is translated into the following instructions: 
   3  E51FB01C LDR  R11 PC -28 x 
   4  E51FA024 LDR  R10 PC -36 y 
   5  E35A0000 CMP  R0 R10 0 test for positive divisor 
   6  DF000007 SWI 
   7  E1B0900B MOV  R9 R0 R11 q := x 
   8  B2799000 RSB  R9 R9 0 
   9  E3A08000 MOV  R8 R0 0 r := 0 
  10  E3A07020 MOV  R7 R0 32 I := 32 
  11  E0999009 ADD  R9 R9 R9 q := q+q 
  12  E0B88008 ADC  R8 R8 R8 r := r+r 
  13  E158000A CMP  R0 R8 R10 IF r >= y THEN 
  14  A048800A SUB  R8 R8 R10    r := r - y 
  15  A2899001 ADD  R9 R9 1    q := q + 1 
  16  E2577001 SUB  R7 R7 1 i := i - 1 
  17  1AFFFFF8 BNE       -8 
  18  E35B0000 CMP  R0 R11 0 IF x < 0 THEN 
  19  AA000003 BGE        3 
  20  E2799000 RSB  R9 R9 0    q := -q 
  21  E3580000 CMP  R0 R8 0    IF r # 0 THEN 
  22  12499001 SUB  R9 R9 1       q := q - 1 
  23  104A8008 SUB  R8 R10 R8       r := y - r 
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  24  E1A0B009 MOV  R11 R0 R9 
  25  E50FB070 STR  R11 PC -112 z 

The function ABS(x) is coded in-line, as are all standard functions. This means that no 
procedure call and return are involved. In this case there are only two instructions involved: 

ABS(x) TST r (x in register r) 
 RSB r, r, 0 (if negative, reverse subtraction, R[r] := 0 – R[r]) 

The used technique of code generation on-the-fly in conjunction with delayed code emission in 
the case of constants allows for significant code improvements without much additional 
complication. (We refrain from using the strong word optimization). Apart from the direct 
evaluation of expressions of constants (constant folding), obvious cases are multiplication and 
division by a power of 2. Here, a shift is used. The ARM instructions conveniently let the 
second operand be shifted prior to its addition or subtraction. We have encountered this use 
already in the address computation for indexed variables. 

x + y * 2n ADD r, x, y LSL n (x, y denote registers) 
x - y DIV 2n SUB r, x, y LSR n 

Similarly, the modulus operation is implemented by a masking operation, if the modulus is a 
power of 2: 

x MOD 2n AND r, x, 2n-1 if n <= 8 
 BIC r, x, 2n-24-1 if n >= 24 
 MOV r, x LSL 32-n if 8 < n < 24 
 MOV r, r LSR 32-n 

10. Real Expressions 

The ARM-processor – we used DEC’s DS1035 in 1996 – does not feature a floating-point unit. 
Therefore, operations on numbers of type REAL must be programmed using integer arithmetic. 
We adhere to the IEEE Standard 32-bit format using a sign bit s, an 8-bit exponent e and a 23-
bit mantissa m such that x = (-1)s × 2e-127 × 1.m 

First, in the expectation of acquiring a floating-point unit at a later time, when available and if 
still considered necessary, the author programmed an emulator package. The compiler 
generated ARM floating-point (FP) instructions that the processor would recognize as 
undefined coprocessor instructions causing a trap. When it turned out that an FP-unit would 
neither be forthcoming nor be necessary, I decided to replace the trap interpreter by a set of 
regular procedures for the basic FP operations. This was an ideal case for using the concept of 
fast leaf procedure (see below).  

PROCEDURE Add(x, y: REAL): REAL; 
PROCEDURE Multiply(x, y: REAL): REAL; 
PROCEDURE Divide(x, y: REAL): REAL; 
PROCEDURE Floor(x: REAL): INTEGER; 
PROCEDURE Float(x: INTEGER): REAL; 

Subtraction is performed by addition with a single, preceding instruction inverting the sign bit. 
Implementation in the form of (leaf) procedures instead of a trap handler improved performance 
by a factor of 3. This was a big surprise. The primary reason was that saving and restoring the 
entire bank of registers could be avoided. Furthermore, the quite complicated decoding of 
instructions into their components turned out to be rather time-consuming too. 

A problem arises because according to the calling convention parameters must be deposited in 
registers R11 and R10. This would preclude operators to occur within expressions, as temporary 
results would be stored in these registers. The usual way out is to push these temporaries onto 
the stack, and pop them after the operation is executed. An option to avoid this overhead is to 
provide the routines in several variants, with parameters in registers R11 and R10, R10 and R9, 
R9 and R8, etc. respectively. This solution, however, was ultimately deemed unacceptable. 
Another option is to reserve certain registers for the FP emulator, and to move arguments and 
results within the register array before and after each call. This solution expands the code 



 16

inordinately, even for simple cases, and was therefore also rejected. Hence registers are now 
saved and restored on the stack as shown by the following example. The routines for saving 
and restoring registers are the same as for procedure calls (see Ch. 16) 

MODULE M2; 
 PROCEDURE P; 
  VAR x, y, z, w: REAL; 
 BEGIN w := x+y; w := x + (y+z); w := (x–y) * (x+y); w := (x+y) + ((x+y) + (x+y)) 
 END P; 
END M2. 

   4  E51CB004 LDR  R11 FP -4 x 
   5  E51CA008 LDR  R10 FP -8 y 
   6  EB010000 BL         0 + 
   7  E50CB010 STR  R11 FP -16 w 

   8  E51CB008 LDR  R11 FP -8 
   9  E51CA00C LDR  R10 FP -12 
  10  EB010006 BL         6 + 
  11  E51CA004 LDR  R10 FP -4 
  12  EB01000A BL        10 + 
  13  E50CB010 STR  R11 FP -1 

  14  E51CB004 LDR  R11 FP -4 
  15  E51CA008 LDR  R10 FP -8 
  16  E22AA102 XOR  R10 R10 ... invert sign 
  17  EB01000C BL        12 + 
  18  E92D0800 STM  SP push x+y 
  19  E51CB004 LDR  R11 FP -4 
  20  E51CA008 LDR  R10 FP -8 
  21  EB010011 BL        17 + 
  22  E1A0A00B MOV  R10 R0 R11 
  23  E8BD0800 LDM  SP pop x+y 
  24  EB020015 BL        21 * 
  25  E50CB010 STR  R11 FP -16 w 

  26  E51CB004 LDR  R11 FP -4 
  27  E51CA008 LDR  R10 FP -8 
  28  EB010018 BL        24 
  29  E92D0800 STM  SP push 
  30  E51CB004 LDR  R11 FP -4 
  31  E51CA008 LDR  R10 FP -8 
  32  EB01001C BL        28 
  33  E1A0A00B MOV  R10 R0 R11 
  34  E8BD0800 LDM  SP pop 
  35  E92D0800 STM  SP push 
  36  E1A0B00A MOV  R11 R0 R10 
  37  E92D0800 STM  SP push 
  38  E51CB004 LDR  R11 FP -4 
  39  E51CA008 LDR  R10 FP -8 
  40  EB010020 BL        32 
  41  E1A0A00B MOV  R10 R0 R11 
  42  E8BD0800 LDM  SP pop 
  43  EB010028 BL        40 
  44  E1A0A00B MOV  R10 R0 R11 
  45  E8BD0800 LDM  SP pop 
  46  EB01002B BL        43 
  47 E50CB010 STR R11 FP -16 w 

The in-line procedures PACK and UNPK serve to insert and extract the exponent from a 
floating-point number in an efficient way. PACK(x, e) effectively multiplies x by 2e. The 
procedure expects a positive, normalized x, i.e. 1.0 <= x < 2.0. UNPK(x, e) assigns the 
exponent of x to e and normalizes x. 

UNPK(x, e)  PACK(x, e)  
LDR  R11 x  LDR  R11 x 
MOV  R10 R11 R11 LSR 23  LDR  R10 e 
SUB  R10 R10 127  ADD  R11 R11 R10 LSL 23 
STR  R10 e  STR  R11 x 
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SUB  R11 R11 R10 LSL 23 
STR  R11 x  

11. Set Expressions 

Values of type SET are represented by a single word, each bit marking the presence of the 
corresponding element in the set. For example, the set {1, 3, 6} is represented by the word 
00…010010102 (= 4AH), with bits 1, 3, and 6 being ones. As a consequence, set operations 
are implemented by simple logical operations, namely set union (+) by OR, set intersection (*) 
by AND, and set difference (-) by BIC. Thus, operations on sets are very efficient. 

The singleton set {n} is generated by loading a 1 and then shifting it by n bits to the left. The set 
{0 .. m} is generated by loading the logical complement of 1, i.e. the set {1 .. 31}, shifting m bits 
to the left, yielding {m+1 .. 31}, and complementing again. The set {m .. n} is obtained by the 
logical subtraction of {0 .. m-1} from {0 .. n}. Only 4 logical instructions are required for this 
operation. The operation ABS(s), denoting a set’s size or number of elements is implemented 
with a tight counting loop consisting of only 3 instructions. Further details are explained on hand 
of the following example: 

MODULE M; 
 PROCEDURE P; 
  VAR m, n: INTEGER; r, s, t: SET; 
 BEGIN s := {}; s := {2, 4, 8 .. 15}; 
  s := s * t + r; s := s / t - r; 
  s := {n}; s := {0 .. m}; s := {m .. n}; 
  n := ABS(s) 
 END P; 
END M. 

m -4    (addresses of variables) 
n -8 
r -12 
s -16 
t -20 

   4  E3A0B000 MOV  R11 R0 0 {} 
   5  E50CB010 STR  R11 FP -16 
   6  E59FB080 LDR  R11 PC 128 {2, 4, 8 .. 15} 
   7  E50CB010 STR  R11 FP -16 
   8  E51CB010 LDR  R11 FP -16 s 
   9  E51CA014 LDR  R10 FP -20 t 
  10  E00BB00A AND  R11 R11 R10 * 
  11  E51CA00C LDR  R10 FP -12 r 
  12  E18BB00A OR   R11 R11 R10 + 
  13  E50CB010 STR  R11 FP -16 
  14  E51CB010 LDR  R11 FP -16 
  15  E51CA014 LDR  R10 FP -20 
  16  E02BB00A XOR  R11 R11 R10 / 
  17  E51CA00C LDR  R10 FP -12 
  18  E1CBB00A BIC  R11 R11 R10 - 
  19  E50CB010 STR  R11 FP -16 

  20  E51CB008 LDR  R11 FP -8 n 
  21  E3B0A001 MOV  R10 R0 1 
  22  E1B0BB1A MOV  R11 R0 R10 LSL R11 
  23  E50CB010 STR  R11 FP -16 {n} 

  24  E51CB004 LDR  R11 FP -4 m 
  25  E3E0A001 MVN  R10 R0 1 
  26  E1E0BB1A MVN  R11 R0 R10 LSL R11 
  27  E50CB010 STR  R11 FP -16 {0 .. m} 

  28  E51CB008 LDR  R11 FP -8 n 
  29  E51CA004 LDR  R10 FP -4 m 
  30  E3E09001 MVN  R9 R0 1 
  31  E1E0BB19 MVN  R11 R0 R9 LSL R11 
  32  E3E09000 MVN  R9 R0 0 
  33  E00BBA19 AND  R11 R11 R9 LSL R10 
  34  E50CB010 STR  R11 FP -16 {m .. n} 
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  35  E51CB010 LDR  R11 FP -16 s 
  36  E3A0A000 MOV  R10 R0 0 
  37  E1B0B0AB MOV  R11 R0 R11 LSR  1 
  38  E2AAA000 ADC  R10 R10 0 
  39  1AFFFFFC BNE       -4 back to 37 
  40  E1A0B00A MOV  R11 R0 R10 ABS(s) 
  41  E50CB008 STR  R11 FP -8 

We emphasise that the operations of set construction are remarkably short and fast. This is a 
testimony to the appropriateness of the ARM instruction set. 

The procedures involved in generating set instructions are: 
PROCEDURE Singleton(VAR x, y: Item);   (* x := {y} *) 
PROCEDURE Set(VAR x, y, z: Item);   (* x := {y .. z} *) 
PROCEDURE SetOp(op: INTEGER; VAR x, y: Item);   (* x := x op y *) 

12. Comparisons and Boolean Expressions 

Boolean expressions, truth values, most frequently occur as conditions in if-, while-, and repeat 
statements, whereas Boolean variables occur relatively rarely. Boolean values are typically the 
results of comparisons. However, compare instructions (CMP) do not deposit a truth value in a 
register, but rather several truth values in the special register called condition code. It typically 
consists of four bits, indicating whether the result of the operation was zero (Z), negative (N) 
whether a carry out (C) or an overflow (V) occurred. Most instructions deliver the condition code 
as a side-effect: In addition to the regular result they yield four (not one) additional Boolean 
values. This arrangement of depositing the result of a comparison in a special register has 
become standard, and implementations of languages must handle it properly, although it 
represents a nasty exception of expression evaluation. 

Comparisons are straightforward, because they are represented by a single instruction. A new 
mode, however, must be introduced to represent this special case. It is called the CC mode, 
and if x.mode = CC, x.r denotes the condition mask that must be used in conditional branches 
in order to execute the branch if the specified comparison yields FALSE. The following example 
illustrates the situation on hand of an if statement. The conditional branch instruction selects a 
function of the four conditions to decide whether or not the branch is to be taken. 

E35B0005 CMP R11 R0 5 IF x = 5 THEN … 
1Axxxxxx BNE L 

Boolean expressions with logical operators are handled unlike their arithmetic counterparts. 
This is mainly because the expression’s value may be known without evaluating the second 
operand. Its evaluation may therefore be skipped. The language definition even requires it to be 
skipped, as its evaluation may be impossible. Logical operators are thus represented by 
conditional branches. This is shown in the following examples, where x, y, and z stand for 
comparisons, and BF stands for a conditional branch to be taken only if the corresponding 
comparison fails, and BT for a branch to be taken if the comparison is satisfied. 

x & y & z x OR y OR z 
code for x code for x 
BF L BT L 
code for y code for y 
BF L BT L 
code for z code for z 

L: … L: … 

The example shows that (1) the condition (mask) must be known when the branch is 
generated, and (2) the offset (jump length) of the branch must be filled in (fixed up) when the 
destination is later known. The first point is solved by letting an item x specify the encountered 
relation by its attribute x.r  and x.mode = CC. This value is generated by procedure SetCC and 
used for the condition field in the branch instruction. 

To solve problem (2), the branches with unresolved destinations are chained with links in their 
offset field. In general, there are two chains, one for BF, the other for BT instructions. Once the 
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destination is known, these chains are traversed and each chain element is replaced by the 
appropriate destination offset. (See procedure FixLink). The item attribute is augmented by the 
heads of the two chains placed in the fields x.a and x.b. 

Apart from comparisons, Boolean values are also generated by the relations IN and IS. The 
former is handled by a TST instruction, the latter is discussed in the section on type tests. 
Furthermore, sets can be compared for inclusion. 

MODULE M; 
 VAR s0, s1: SET; k, n: INTEGER; 
BEGIN 
 IF s0 <= s1 THEN k := 3 END ; 
 IF s0 >= s1 THEN k := 5 END ; 
 IF n IN s0 THEN k := 7 END 
END M. 

   3  E51FB018 LDR  R11 PC -24 s0 
   4  E51FA020 LDR  R10 PC -32 s1 
   5  E1DBB00A BIC  R11 R11 R10 
   6  1A000001 BNE        1 to 9 
   7  E3A0B003 MOV  R11 R0 3 
   8  E50FB034 STR  R11 PC -52 k 

   9  E51FB030 LDR  R11 PC -48 s0 
  10  E51FA038 LDR  R10 PC -56 s1 
  11  E1DAA00B BIC  R10 R10 R11 
  12  1A000001 BNE        1 to 15 
  13  E3A0B005 MOV  R11 R0 5 
  14  E50FB04C STR  R11 PC -76 

  15  E51FB048 LDR  R11 PC -72 s0 
  16  E51FA058 LDR  R10 PC -88 n 
  17  E3A09001 MOV  R9 R0 1 
  18  E11B0A19 TST  R0 R11 R9 LSL R10 
  19  0A000001 BEQ        1 to 22 
  20  E3A0B007 MOV  R11 R0 7 
  21  E50FB068 STR  R11 PC -104  

The procedures involved in generating conditions are: 
PROCEDURE IntRelation(op: INTEGER; VAR x, y: Item); (* x := x < y *) 
PROCEDURE SetRelation(op: INTEGER; VAR x, y: Item); (* x := x < y *) 
PROCEDURE RealRelation(op: INTEGER; VAR x, y: Item); (* x := x < y *) 
PROCEDURE CompareArrays(op: INTEGER; VAR x, y: Item); (* x := x < y *) 
PROCEDURE In(VAR x, y: Item); (* x := x IN y *) 
PROCEDURE Odd(VAR x: Item); (* x := ODD(x) *) 
PROCEDURETypeTest(VAR x: Item; T: OSAB.Type); (* x := x IS T *) 
PROCEDURE Bit(VAR x, y: Item) 

13. If, While, and Repeat Statements 

The generation of code for conditional and iterative statements follows a simple pattern which is 
evident through the following examples. References to points in the code (labels) are held in 
variables of the respective parsing procedures. Thereby care is automatically taken of nested 
statements through recursion. The same technique of offset fixup is used as for Boolean 
expressions. 

PROCEDURE P; 
 VAR m, n: INTEGER; 
BEGIN 
 IF m = 0 THEN n := 33 
 ELSIF m < 0 THEN n := 17 
 ELSE n := 0 
 END ; 
 WHILE m > n DO m := m - n  (*gcd*) 
 ELSIF n > m DO n := n - m 
 END ; 
 REPEAT DEC(n) UNTIL n = 0 
END P 
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   4  E51CB004 LDR  R11 FP -4 m 
   5  E35BB000 CMP  R11 R11 0 
   6  1A000002 BNE        2 to 10 
   7  E3A0B021 MOV  R11 R0 33 
   8  E50CB008 STR  R11 FP -8 n 
   9  EA000007 BR         7 to 18 
  10  E51CB004 LDR  R11 FP -4 m 
  11  E35BB000 CMP  R11 R11 0 
  12  AA000002 BGE        2 to 16 
  13  E3A0B011 MOV  R11 R0 17 
  14  E50CB008 STR  R11 FP -8 n 
  15  EA000001 BR         1 to 18 
  16  E3A0B000 MOV  R11 R0 0 
  17  E50CB008 STR  R11 FP -8 n 

  18  E51CB004 LDR  R11 FP -4 m 
  19  E51CA008 LDR  R10 FP -8 n 
  20  E15B000A CMP  R0 R11 R10 
  21  DA000004 BLE        4 to 27 
  22  E51CB004 LDR  R11 FP -4 m 
  23  E51CA008 LDR  R10 FP -8 n 
  24  E05BB00A SUB  R11 R11 R10 
  25  E50CB004 STR  R11 FP -4 m 
  26  EAFFFFF6 BR       -10 to 18 
  27  E51CB008 LDR  R11 FP -8 n 
  28  E51CA004 LDR  R10 FP -4 m 
  29  E15B000A CMP  R0 R11 R10 
  30  DA000004 BLE        4 to 36 
  31  E51CB008 LDR  R11 FP -8 n 
  32  E51CA004 LDR  R10 FP -4 m 
  33  E05BB00A SUB  R11 R11 R10 
  34  E50CB008 STR  R11 FP -8 n 
  35  EAFFFFED BR       -19 to 18 

  36  E51CB008 LDR  R11 FP -8 n 
  37  E24BB001 SUB  R11 R11 1 
  38  E50CB008 STR  R11 FP -8 n 
  39  E51CB008 LDR  R11 FP -8 n 
  40  E35BB000 CMP  R11 R11 
  41  1AFFFFF7 BNE       -7 to 36 

14. The For Statement 

An iteration can be conveniently expressed by a for statement if an integer is progressing over 
a range of values with a fixed step that can be either positive or negative. The step must be a 
constant. This is required because it determines the termination condition. The step must be 
less than 256 in absolute value. This is due to the desire to use an add instruction with 
immediate operand. 

PROCEDURE P; 
 VAR i, n, k: INTEGER; 
BEGIN 
 FOR i := 1 TO n BY 2 DO k := k+i END 
ENDP 

   4  E3A0B000 MOV  R11 R0 1 1  
   5  E51CA008 LDR  R10 FP -8 n 
   6  E15B000A CMP  R0 R11 R10 
   7  CA000007 BGT        7 to 16 
   8  E50CB004 STR  R11 FP -4 i 
   9  E51CB00C LDR  R11 FP -12 k 
  10  E51CA004 LDR  R10 FP -4 i 
  11  E09BB00A ADD  R11 R11 R10 
  12  E50CB00C STR  R11 FP -12 k 
  13  E51CB004 LDR  R11 FP -4 i 
  14  E28BB002 ADD  R11 R11 2 +2 
  15  EAFFFFF4 BR       -12 to 5 

15. The Case Statement 
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The case statement serves to select a statement according to an integer, just as an element is 
selected from an array. This helps to avoid long cascades of if-elsif statements and increases 
efficiency. However, case statements are recommended only if the set of selectable statements 
is reasonably large. The compiler generates an internal array of jump offsets corresponding to 
the component statements. The table entry is chosen by the index specified in the case clause. 
The resulting code is shown in the following example: 

PROCEDURE P; 
 VAR k: INTEGER; 
BEGIN 
 CASE k OF 
   0: k := 1 
 | 1: k := 4 
 | 2: k := 16 
 | 3: k := 64 
 END 
END P; 

   4  E51CB004 LDR  R11 FP -4 k 
   5  E35B0003 CMP  R0 R11 3 range check 
   6  908FB10B ADD  R11 PC R11 LSL  2 
   7  959BB038 LDR  R11 R11 56 Tab[k] 
   8  908FF10B ADD  PC PC R11 LSL  2 switch 
   9  EF000004 SWI  trap, if not in range 

  10  E3A0B001 MOV  R11 R0 1 case 0 
  11  E50CB004 STR  R11 FP -4 
  12  EA00000C BR        12 to 26 

  13  E3A0BF01 MOV  R11 R0 4 case 1 
  14  E50CB004 STR  R11 FP -4 
  15  EA000009 BR         9 to 26 

  16  E3A0BE01 MOV  R11 R0 16 case 2 
  17  E50CB004 STR  R11 FP -4 
  18  EA000006 BR         6 to 26 

  19  E3A0BD01 MOV  R11 R0 64 case 3 
  20  E50CB004 STR  R11 FP -4 
  21  EA000003 BR         3 to 26 

  22  00000000   Table of offsets 
  23  00000003 
  24  00000006 
  25  00000009 

We emphasize that (in contrast to original Oberon) case labels must be integers starting with 0 
(like lower array bounds). The table is restricted to 256 entries. Note that there is only a single 
jump to the selected case, plus one leading to the statement following the cases. Case 
statements are handled by procedure Case in the parser. It contains an array as local variable 
which holds the entry addresses of the cases indexed by their label. The switch is generated by 
procedure CaseHead in module OSAG, and the offset table is emitted by procedure CaseTail. 

16. Procedures and Functions 

Every procedure invocation establishes an area of storage for its local variables. Local 
variables and parameters are addressed by adding their static offset to a base address specific 
to this invocation and held in the register called frame pointer (FP).The code for the procedure 
is headed by a so-called prolog that allocates the necessary space in the stack, initializes the 
frame pointer, and stores the link to the previous frame and the return address. The 
procedure’s code is terminated by an epilog that re-establishes the stack state that existed 
before the call. Fig. 3 shows the global storage layout and that of two procedure frames on the 
stack. 
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Fig. 3  Storage Layout 

The code corresponding to a procedure call consists of a Branch and Link instruction, preceded 
by code evaluating the actual parameters of the call. Value parameters (expressions) are 
evaluated. In the case of Var-parameters their addresses are generated. Values and addresses 
are deposited in free registers in descending order, starting with R11. The branch instruction 
then transfers control to the procedure and deposits the return address in R14 (LNK). The 
prolog then moves the parameters from the registers into memory (except in the case of leaf 
procedures) and adjusts the base registers FP (frame pointer) and SP (stack pointer). The 
relevant procedures are Call and SaveRegisters, the latter being invoked before the 
compilation of parameters: 

STM SP, {parameters, FP, LNK} push parameters into memory, decrements SP 
ADD FP, SP, m FP := SP + size of param block 
SUB SP, SP, n SP := SP – size of local variable block 

SP marks the top of the stack, and FP is the origin of the chain linking the frames. At the 
bottom of each frame lie the two words holding this link (to the preceding frame) and the call’s 
return address. This pair is establishes by the same STM instruction that stores the parameters 
in memory. 

The epilog restores the stack to the state before the call, and in the case of a function 
procedure, copies the result onto the top of the (register) stack (by procedure RestoreRegs). 
The last element of the frame chain is then removed, and the return address is moved into the 
PC. This is again done by a single LDM instruction. 

MOVR SP, FP SP := FP 
LDM SP, {FP, PC} pop from memory FP and PC 

Prolog and epilog are remarkably short thanks to the convenient load/store multiple instruction 
of the ARM processor that can be programmed as push and pop operations. As can be seen in 
the example below, the result of a function is stored in a register (R11), replacing the 
arguments in registers (R11 , R10, …) 

It should be noted that parameters are stored in consecutive registers. This is where they are 
placed by the routines for expression evaluation. It limits the number of parameters (to at most 
12). Of graver consequence is that the register allocation scheme must be such that no gaps 
are left in the register bank. The register bank must be treated like a stack. Fig. 4 shows the 
use of the register bank before, during and after a procedure activation. 
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Fig. 4. Register usage on procedure call 

MODULE M; 
 VAR a, b: INTEGER; 

 PROCEDURE F(x, y: INTEGER): INTEGER; 
  VAR z: INTEGER; 
 BEGIN 
  IF x > y THEN z := F(x-y, y) 
  ELSIF y > x THEN z := F(y-x, x) 
  ELSE z := x 
  END ; 
  RETURN z 
 END F; 

 PROCEDURE Q(VAR x, y: INTEGER); 
  VAR z: INTEGER; 
 BEGIN z := x; x := y; y := z 
 END Q; 

BEGIN a := F(35, 21); Q(a, b) 
END M. 

a   -4 variable offsets  
b   -8 
z  -12 
z  -12 

   1  E92D5C00 STM  SP, {R10, R11, FP, LNK}  prolog F 
   2  E28DC008 ADD  FP SP 8 
   3  E24DD004 SUB  SP SP 4 

   4  E51CB004 LDR  R11 FP -4 x 
   5  E51CA008 LDR  R10 FP -8 y 
   6  E15B000A CMP  R0 R11 R10 
   7  DA000006 BLE        6 to 15 
   8  E51CB004 LDR  R11 FP -4 x 
   9  E51CA008 LDR  R10 FP -8 y 
  10  E05BB00A SUB  R11 R11 R10 
  11  E51CA008 LDR  R10 FP -8 y 
  12  EBFFFFF3 BL       -13 to 1 (recursion) 
  13  E50CB00C STR  R11 FP -12 
  14  EA00000C BR        12 to 28 
  15  E51CB008 LDR  R11 FP -8 
  16  E51CA004 LDR  R10 FP -4 
  17  E15B000A CMP  R0 R11 R10 
  18  DA000006 BLE        6 to 26 
  19  E51CB008 LDR  R11 FP -8 
  20  E51CA004 LDR  R10 FP -4 
  21  E05BB00A SUB  R11 R11 R10 
  22  E51CA004 LDR  R10 FP -4 
  23  EBFFFFE8 BL       -24 to 1 (F) 
  24  E50CB00C STR  R11 FP -12 
  25  EA000001 BR        1 to 28 
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  26  E51CB004 LDR  R11 FP -4 
  27  E50CB00C STR  R11 FP -12 

  28  E51CB00C LDR  R11 FP -12 RETURN z 
  29  E1A0D00C MOV  SP R0 FP epilog F 
  30  E8BD9000 LDM  SP, {FP, PC} 

  31  E92D5C00 STM  SP, {R10, R11, FP, LNK}  prolog Q 
  32  E28DC008 ADD  FP SP 8 
  33  E24DD004 SUB  SP SP 4 

  34  E51CB004 LDR  R11 FP -4 x 
  35  E59BB000 LDR  R11 R11 0 
  36  E50CB00C STR  R11 FP -12 z 
  37  E51CB008 LDR  R11 FP -8 y 
  38  E59BB000 LDR  R11 R11 0 
  39  E51CA004 LDR  R10 FP -4 x 
  40  E58AB000 STR  R11 R10 0 
  41  E51CB00C LDR  R11 FP -12 z 
  42  E51CA008 LDR  R10 FP -8 y 
  43  E58AB000 STR  R11 R10 0 

  44  E1A0D00C MOV  SP R0 FP epilog Q 
  45  E8BD9000 LDM  SP, {FP, PC} 

  46  E92D5000 STM  SP, {FP, LNK} prolog module M 
  47  E1A0C00D MOV  FP R0 SP 

  48  E3A0B023 MOV  R11 R0 35 
  49  E3A0A015 MOV  R10 R0 21 
  50  EBFFFFCD BL       -51 to 1 (F) 
  51  E50FB0D8 STR  R11 PC -216 a 

  52  E24FBF37 SUB  R11 PC 220 a 
  53  E24FAF39 SUB  R10 PC 228 b 
  54  EBFFFFE7 BL       -25 to 31 (Q) 

  55  E1A0D00C MOV  SP R0 FP epilog M 
  56  E8BD9000 LDM  S, {FP, PC} 

A complication arises if a procedure with parameters is called as a variable, and if the variable 
is indexed or accessed via pointer.  The reason lies in the single-pass compilation scheme 
together with the need to allocate parameters strictly in sequence in registers. This implies that 
a procedure address cannot lie in a register below the parameters. Our solution is to evaluated 
the selector and push the address on the stack in order to be popped after the parameters are 
evaluated. The following example shows, how this case is handled. 

MODULE M2; 
 TYPE PT = PROCEDURE (m, n: INTEGER); 
  Object = POINTER TO RECORD w: INTEGER; p: PT END ; 
 VAR obj: Object; a: ARRAY 4 OF PT; 
  
 PROCEDURE P(m, n: INTEGER; q: PT; VAR obj: Object); 
 BEGIN q(m, n); obj.p(m, n); a[m](m, n)  
 END P; 
END M2. 
 
   6  E51CB004 LDR  R11 FP -4 m 
   7  E51CA008 LDR  R10 FP -8 n 
   8  E51C900C LDR  R9 FP -12 q 
   9  E1A0E00F MOV  LNK R0 PC 
  10  E1A0F009 MOV  PC R0 R9 call 

  11  E51CB010 LDR  R11 FP -16 obj 
  12  E59BB000 LDR  R11 R11 0 obj↑ 
  13  E59BB004 LDR  R11 R11 4 obj↑.p 
  14  E52DB004 STR  R11 !SP -4 push branch adr 
  15  E51CB004 LDR  R11 FP -4 m 
  16  E51CA008 LDR  R10 FP -8 n 
  17  E1A0E00F MOV  LNK R0 PC 
  18  E4BDF004 LDR  PC !SP 4 pop, call 
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  19  E51CB004 LDR  R11 FP -4 m 
  20  E35BBF01 CMP  R11 R11 4 check range 
  21  2F000001 SWI 
  22  E08FB10B ADD  R11 PC R11 LSL  2  
  23  E51BB074 LDR  R11 R11 -116 a[m] 
  24  E52DB004 STR  R11 !SP -4 push branch adr 
  25  E51CB004 LDR  R11 FP -4 m 
  26  E51CA008 LDR  R10 FP -8 n 
  27  E1A0E00F MOV  LNK R0 PC 
  28  E4BDF004 LDR  PC !SP 4 pop, call 

17. Records and Pointers 

Pointers and records serve to build up complex and dynamic data structures and are a means 
for defining recursive structures. The components of records are called fields, and the compiler 
assigns fixed offsets relative to the record’s origin. Records are either static variables, or they 
are accessed indirectly via pointers. The value of a pointer variable is the address of the 
referenced record, or it is NIL, when no record is referenced. A record is dynamically allocated 
by the intrinsic procedure NEW that is contained in the service module MAU (memory 
allocation unit). The compiler automatically generates an import entry in the object file, if MAU 
is referenced.  

MODULE M2; 
 TYPE Rec = RECORD u, v, w: INTEGER END ; 
  Ptr = POINTER TO Rec; 

 PROCEDURE Q; 
  VAR p, q: Ptr; 
 BEGIN NEW(p); p.w := 9; q := NIL 
 END Q; 

END M2. 

   7  E24CBF01 SUB  R11 FP 4 adr of p 
   8  E24FAF09 SUB  R10 PC 36 adr of TD 
   9  EB010000 BL         0 call to NEW 

  10  E3A0B009 MOV  R11 R0 9 
  11  E51CA004 LDR  R10 FP -4 p 
  12  E58AB008 STR  R11 R10 8 p.w 

  13  E3A0B000 MOV  R11 R0 0 NIL 
  14  E50CB008 STR  R11 FP -8 q 

Fig. 5.  Record allocation and pointer assignment 

A call of NEW(p) allocates a record and assigns its address to the pointer variable p. This 
implies that every pointer is bound to a record type. This binding is fixed with the pointer’s 
declaration. For every record type a type descriptor (TD) is created. It is used for recording the 
hierarchy of extensions of a type (see below), and contains the necessary meta information 
about the type that is needed by a garbage collector. The latter information is not generated in 
this current implementation, with the exception of the record’s size. Every record so created is 
prefixed with a field pointing to its type descriptor. It is called the tag. Fig. 5 shows the effect of 
a call to NEW. 

Pointer type declarations are in so far an anomaly, as they allow forward references. It is 
permissible that the base type (a record) of a pointer type be unknown when scanning the text 
sequentially. This exception from the general rule that everything being referenced must have 
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been previously declared, causes more difficulties than might be expected. Our solution is to 
record all pointer type declarations in a list rooted in the global variable pbsList. Its elements of 
type PtrBase contain the name of the (possibly not yet defined) base type and a pointer to the 
pointer declaration. When a record type declaration is encountered, this list is scanned, and the 
base type in the pointer type descriptor is updated. At the end of a declaration section, the list is 
scanned again for still undefined base types (indicated by the integer type). 

18. Assignment of Arrays 

Assignments to arrays are also expressed by the regular assignment operator. The “:=” symbol 
looks rather inconspicuous, considering that copying entire arrays may be a very heavy 
operation. In contrast to original Oberon, where a the standard procedure COPY is used, the 
“:=” symbol now also applies to arrays and strings. 

Therefore it is mandatory to implement array assignments in an efficient way using in-line code. 
In this case, the ARM’s post-increment addressing mode appears as most useful. Here, the 
absolute address is in a register, and the instruction’s offset field specifies the amount by which 
this address is incremented (or decremented) after the memory access. This increment is 
typically 4 (1 word). The copying operation is then executed by a tight loop of only 4 instructions 
(at 6 – 9 in the following code excerpt): 

TYPE A = ARRAY 100 OF INTEGER; 
VAR dst, src: A; 
 dst := src 
   3  E51CB004 LDR  R11 FP -4 adr of dst 
   4  E51CA008 LDR  R10 FP -8 adr of src 
   5  E3A09064 MOV  R9 R0 100 length 
   6  E4BA8004 LDR  R8 R10 4 load word from src 
   7  E4AB8004 STR  R8 R11 4 store word to dst 
   8  E2599001 SUB  R9 R9 1 decrement count 
   9  1AFFFFFB BNE       -5 to 6 

The arrays must have the same element type, but the source array may be shorter than the 
destination array. Hence, the length (count) is taken from the source. The length comparison is 
performed by the compiler. This is not possible in the case of open arrays, when the check must 
be performed at run-time. (Currently, only the source may be an open array). See procedures 
OSAP.StatementSequence and OSAG.CopyArray. 

 PROCEDURE Copy(VAR dst: A; VAR src: ARRAY OF INTEGER); 
 BEGIN dst := src 
 END Copy; 

  25  E51CB004 LDR  R11 FP -4 adr of dst 
  26  E51CA008 LDR  R10 FP -8 adr of src 
  27  E51C900C LDR  R9 FP -12 length of src 
  28  E3590064 CMP  R0 R9 100 compare with length of dst 
  29  CF000003 SWI  trap 
  30  E4BA8004 LDR  R8 R10 4 load word from src 
  31  E4AB8004 STR  R8 R11 4 store word to dst 
  32  E2599001 SUB  R9 R9 1 decrement count 
  33  1AFFFFFB BNE       -5 to 30 

The ARM hardware is word-oriented. Therefore, copying is always done word by word, rather 
than byte by byte. As a consequence, the length of character (and Boolean) arrays is always 
rounded up to the next multiple of 4. Still, simple variables and record fields of these types use 
a single byte only. 

19. Dynamic Arrays 

Dynamic arrays are here introduced as an addition to Oberon. An array is called dynamic, if its 
length is determined “dynamically”, i.e. at execution time. This is done by a call to the intrinsic 
procedure NEW with a second parameter indicating the desired length. Example: 

VAR a: ARRAY OF INTEGER; 
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BEGIN … NEW(a, len) … 

where len is an expression of type INTEGER and a non-negative value. The mechanism for open 
arrays (parameters) is reused. The array is accessed indirectly via a descriptor consisting of 
two words. The word with the higher address contains the array’s address, the other its length. 
In the symbol table, dynamic arrays are characterized by their length being -1, their size 8. 

PROCEDURE P; 
 VAR k: INTEGER; 
  a: ARRAY OF INTEGER; 
BEGIN NEW(a, 10); a[k] := 100 
END P; 

   4  E24CBF02 SUB  R11 FP 8 adr a 
   5  E3A0A00A MOV  R10 R0 10 len 
   6  E3A09F01 MOV  R9 R0 4 element size 
   7  EB030000 BL         0 NEW (updated by loader)   

   8  E51CB004 LDR  R11 FP -4 k 
   9  E51CA00C LDR  R10 FP -12 len a 
  10  E15B000A CMP  R0 R11 R10 index check 
  11  2F000001 SWI 
  12  E51CA008 LDR  R10 FP -8 a[k] 
  13  E3A09F19 MOV  R9 R0 100 
  14  E78A910B STR  R9 R10 R11 LSL  2 

Dynamic arrays cannot be elements of other data structures. 

20. Strings 

Strings are sequences of characters. As they are classified as constants, they represent an 
exceptional case in so far as they are structured constants, the only ones in the language. 
Constants are typically allocated as immediate values in the instructions. But this is impossible 
for structured constants requiring individual amounts of storage. They can neither be allocated 
in a single word, nor can they be stored as a literal in an immediate field of an instruction. 
Indeed, they present somewhat of a problem to the compiler designer, as they do not fit into the 
regular scheme of constant handling. Strings are loaded into the buffer strings (from 
OSAS.string) by procedure MakeStringItem, when the scanner delivers the symbol string.. 

Hence the question arises where to allocate strings. The only possibility is to place them after the 
program code. As the address is unknown when the instruction is issued, the string is stored 
temporarily in a table of string constants (TSC). At the end of each procedure, the table is 
scanned and the necessary address fixups are made (OSAG.FixupConstants). Notably, the same 
technique is used for other constants which do not fit into the very short immediate field of ARM 
instructions, and for indirect addresses for imported variables (tables TIC, TXR). As the address 
field of instructions is also very short, the offsets are rather limited. It has turned out that the 
updating of addresses and the flushing of the tables, cannot always wait until the end of the 
currently compiled procedure is reached, as the offsets would become too large.  Therefore, the 
need for flushing the tables is checked at the end of every statement. In this case, however, a 
jump instruction must be issued to cross over the inserted constants. This is a most ugly feature, 
but the ARM’s instruction coding unfortunately makes it necessary. 

Declared string constants do not require fixups, as they are put into the code array when 
declared. Therefore their address is known. Both string literals and declared strings are 
constants, but are referenced like variables (mode = Var). The trick of treating them like variables 
in the code generator has the advantage, that also for export/import the necessary mechanisms 
are already available and can be readily used. In reality, however, initially export of variables was 
not permitted, and the mechanism had to be introduce to handle string constants (and type 
descriptors), and then could of course also be used for variables. 

Assignments of strings to variables is identical to that of arrays, namely by copying word for 
word in a tight loop. This is efficient, and it is possible, because of the postulate that string 
lengths and the lengths of character arrays be always a multiple of 4. However, termination is 
not due to a count reaching zero, but by detecting the string’s terminating null character. 
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In contrast to general arrays, character arrays and strings can be compared, as they are 
(alphabetically) ordered values. Comparison proceeds character by character in a tight loop. 
Repetition terminates, if either an unequal pair or a zero character is encountered. The details 
can be seen from the following brief example: 

MODULE M; 
 CONST S = "abcdefg"; 
 VAR k: INTEGER; 
  a, b: ARRAY 16 OF CHAR; 
BEGIN a := S; b := "ABCDE"; 
 IF a = b THEN k := 1 END ; 
 IF a < "012" THEN k := 3 END ; 
END M. 

k   -4 addresses of variables 
a  -20 
b  -36 

   1  64636261 abcdefg S  
   2  00676665  

   5  E24FBE03 SUB  R11 PC 48 a 
   6  E24FAF07 SUB  R10 PC 28 S 
   7  E4BA9004 LDR  R9 R10 4 
   8  E4AB9004 STR  R9 R11 4 
   9  E21994FF AND  R9 R9 0FF000000 
  10  1AFFFFFB BNE       -5 to 7 

  11  E24FBF16 SUB  R11 PC 88 b 
  12  E28FAF1B ADD  R10 PC 108 @41 
  13  E4BA9004 LDR  R9 R10 4 
  14  E4AB9004 STR  R9 R11 4 
  15  E21994FF AND  R9 R9 0FF000000 
  16  1AFFFFFB BNE       -5 to 13 

  17  E24FBE06 SUB  R11 PC 96 a 
  18  E24FAF1D SUB  R10 PC 116 b 
  19  E4FB9001 LDRB  R9 R11 1 
  20  E4FA8001 LDRB  R8 R10 1 
  21  E1590008 CMP  R0 R9 R8 
  22  1A000001 BNE        1 to 25 if unequal 
  23  E3590000 CMP  R0 R9 0 0X ? 
  24  1AFFFFF9 BNE       -7 to 19 
  25  1A000001 BNE        1 to 28 
  26  E3A0B001 MOV  R11 R0 1 
  27  E50FB078 STR  R11 PC -120 k := 1 

  28  E24FBF23 SUB  R11 PC 140 a 
  29  E28FAE03 ADD  R10 PC 48 @43 
  30  E4FB9001 LDRB  R9 R11 1 
  31  E4FA8001 LDRB  R8 R10 1 
  32  E1590008 CMP  R0 R9 R8 
  33  1A000001 BNE        1 to 36 if unequal 
  34  E3590000 CMP  R0 R9 0 0X ? 
  35  1AFFFFF9 BNE       -7 to 30 
  36  AA000001 BGE        1 to 39 if greater or equal 
  37  E3A0B003 MOV  R11 R0 3 
  38  E50FB0A4 STR  R11 PC -164 k := 3 

  41  44434241 ABCDE 
  42  00000045  
  43  00323130 012 

The relevant compilation procedures are Declarations in OSAP, and AllocString, EnterString, 
FixupConstants, MakeItem, CompareArrays, CopyString, and StringParam in OSAG. 

21. Type Extension, Type Tests and –Guards 

Static typing is an important principle in programming languages. It implies that every constant, 
variable or function is of a certain data type, and that this type can be derived by reading the 
program text without executing it. It is the key principle to introduce important redundancy in 
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languages in such a form that a compiler can detect inconsistencies. It is therefore the key 
element for reducing the number of errors in programs. 

However, it also acts as a restriction. It is, for example, impossible to construct data structures 
(arrays, trees) with different types of elements. In order to relax the rule of strictly static typing, 
the notion of type extension was introduced in Oberon. It makes it possible to construct 
inhomogeneous data structures without abandoning type safety. The price is that the checking 
of type consistency must in certain instances be deferred to run-time. Such checks are called 
type tests. The challenge is to defer to run-time as few checks as possible and as many as 
needed. 

The solution in Oberon is to introduce families of types, and compatibility among their 
members. Their members are thus related, and a family forms a hierarchy. The principle idea is 
the following: Any record type T0 can be extended into a new type T1 by additional record 
fields (attributes). T1 is then called an extension of T0, which in turn is said to be T1’s base 
type. T1 is then type compatible with T0, but not vice-versa. This property ensures that in many 
cases static type checking is still possible. Furthermore, it turns out that run-time tests can be 
made very efficient, thus minimizing the overhead for maintaining type safety. 

For example, given the declarations 
TYPE R0 = RECORD u, v: INTEGER END ; 
 R1 = RECORD (R0) w: INTEGER END 

we say that R1 is an extension of R0. R0 has the fields u and v, R1 has u, v, and w. The 
concept becomes useful in combination with pointers. Let 

TYPE P0 = POINTER TO R0; 
 P1 = POINTER TO R1; 
VAR p0: P0;  p1: P1; 

Now it is possible to assign p1 to p0 (because a P1 is always also a P0), but not p0 to p1, 
because a P0 need not be a P1. This has the simple consequence that a variable of type P0 
may well point to an extension of R0. Therefore, data structures can be declared with a base 
type, say P0, as common element type, but in fact they can individually differ, they can be any 
extension of the base type. 

Obviously, it must be possible to determine the actual, current type of an element even if the 
base type is statically fixed. This is possible through a type test, syntactically a Boolean factor: 

p0 IS P1 (short for p0^ IS R1) 

Furthermore, we introduce the type guard. In the present example, the designator p0.w is 
illegal, because there is no field w in a record of type R0, even if the current value of p0^ is a 
R1. As this case occurs frequently, we introduce the short notation p0(P1).w, implying a test p0 
IS P1 and an abort if the test is not met. 

It is important to mention that this technique also applies to formal variable parameters of 
record type, as they also represent a pointer to the actual parameter. Its type may be any 
extension of the type specified for the formal parameter in the procedure heading. 

How are type test and type guard efficiently implemented? Our first observation is that they 
must consist of a single comparison only, similar to index checks. This in turn implies that types 
must be identified by a single word. The solution lies in using the unique address of the type 
descriptor of the (record) type. Which data must this descriptor hold? Essentially, type 
descriptors (TDs) must identify the base types of a given type. Consider the following hierarchy: 

TYPE T = RECORD … END ; 
 T0 = RECORD (T) … END ; extension level 1 
 T1 = RECORD (T) … END ; extension level 1 
 T00 = RECORD (T0) … END ; extension level 2 
 T01 = RECORD (T0) … END ; extension level 2 
 T10 = RECORD (T1) … END ; extension level 2 
 T11 = RECORD (T1) … END ; extension level 2 
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In the symbol table, the field base refers to the ancestor of a given record type. Thus base of 
the type representing T11 points to T1, etc. Run-time checks, however, must be fast, and 
hence cannot proceed through chains of pointers. Instead, each TD is an array with references 
to the ancestor TDs (including itself). For the example above, the TDs are as follows: 

TD(T)  = [T] 
TD(T0) = [T, T0] 
TD(T1) = [T, T1] 
TD(T00) = [T, T0, T00] 
TD(T01) = [T, T0, T01] 
TD(T10) = [T, T1, T10] 
TD(T11) = [T, T1, T11] 

Evidently, the first element can be omitted, as it always refers to the common base of the type 
hierarchy. The last element always points to the TD’s owner. Like constants, TDs are allocated 
in the code area. 

References to TDs are called type tags. They are required in two cases. The first is for records 
referenced by pointers. Such dynamically allocated records carry an additional, hidden field 
holding their type tag. The second case is that of record-typed VAR-parameters. In this case 
the type tag is explicitly passed along with the address of the actual parameter. Such 
parameters therefore require two words/registers. 

A type test then consists of a test for equality of two type tags. In p IS T the first tag is that of 
the n’th entry of the TD of p^, where n is the extension level of T. The second tag is that of type 
T. This is shown in the following example. 

MODULE M; 
 TYPE R0 = RECORD x: INTEGER END ; 
  R1 = RECORD (R0) y: INTEGER END ; 
  R2 = RECORD (R1) z: INTEGER END ; 
  P0 = POINTER TO R0; 
  P1 = POINTER TO R1; 
  P2 = POINTER TO R2; 
 VAR k: INTEGER; 
  p0: P0; p1: P1; p2: P2; 
BEGIN 
 IF p0 IS P2 THEN k := 3 END ; 
 k := p0(P2).z 
END M. 
 
k  2   -4 
p0  2   -8 
p1  2  -12 
p2  2  -16 

   1-3 TD(R0) 
   4-6 TD(R1) 
   7-9 TD(R2) 

  12  E51FB040 LDR  R11 PC -64 p0 
  13  E51BA004 LDR  R10 R11 -4 tag(p0^) 
  14  E59AA008 LDR  R10 R10 8 TD(p0^)[2] 
  15  E24F9F0A SUB  R9 PC 40 tag(R2) 
  16  E15A0009 CMP  R0 R10 R9 
  17  1A000001 BNE        1 to 20, if test not met 
  18  E3A0B003 MOV  R11 R0 3 
  19  E50FB058 STR  R11 PC -88 k 

  20  E51FB060 LDR  R11 PC -96 p0 
  21  E51BA004 LDR  R10 R11 -4 tag(p0^) 
  22  E59AA008 LDR  R10 R10 8 TD(p0^)[2] 
  23  E24F9F12 SUB  R9 PC 72 tag(R2) 
  24  E15A0009 CMP  R0 R10 R9 
  25  1F000002 SWI  trap, if test not met 
  26  E59BB008 LDR  R11 R11 8 p0.z 
  27  E50FB078 STR  R11 PC -120 k 
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When declaring a record type, it is not known how many extensions, nor how many levels will 
be built on this type. Therefore TD’s should actually be infinite arrays. We decided to restrict 
them to 2 levels only. The first entry of the arrays with 3 elements currently contains the size of 
the record. If a garbage collector will be available, the size may be replaced by a pointer to an 
extended type descriptor holding further meta-data about the type. 

22. Leaf procedures and Register Variables 

It is one of the requirements of real-time applications that selected parts of a program be coded 
most efficiently, i.e. that code is “optimized”. This requirement can hardly be met by a simple 
and fast compiler. On the other hand, also predictability and perspicuity are requirements. And 
they are best met by straight-forward code generators. Sequences of instructions must not be a 
riddle to the programmer who decides to inspect the generated code. Small changes in a 
program must not cause large changes in the code. 

Here we thought a satisfactory compromise would lie a simple compiler strategy at large, 
together with facilities for code improvement through explicit programming hints at selected 
places, such as real-time critical sections. Three facilities came to mind, the first being register 
variables, the second leaf procedures, and the third array riders. 

Register variables are those that are specified to remain allocated in registers rather than being 
stored in memory. If such variables are to be determined by the compiler, the resulting 
algorithm is rather complex, requiring much time and space. The alternative is to let the 
programmer explicitly specify such variables. Of course, registers are a most scarce resource; 
hence only very few such variables can exist, and they must be carefully selected. Also, there 
lurks the danger that temporary relocation to memory may be necessary, e.g. in the case of 
procedure calls, thus reducing the benefit, and sometimes even converting it into a burden. 

On every call, the frame pointer FP and the return address are pushed onto the stack, in 
addition to all parameters. In the case of procedures that do not call other procedures this effort 
could be spared, resulting in faster calls and returns. We call such procedures leaf procedures, 
as they are the leaf nodes in the tree structure of calls. This property could be detected by the 
compiler, requiring, however, a multi-pass strategy, complicating the entire compiler. Again, we 
opt for a facility to let the programmer specify that a procedure is a leaf. 

In Oberon-SA, the facilities of register variables and leaf procedures are combined. A leaf 
procedure is specified by an asterisk following the symbol PROCEDURE. It then acquires the 
following properties and restrictions: 

1. It cannot contain any calls (except of in-line coded, standard procedures). 
2. Parameters are left in registers (R11, R10, …) and are not stored on the stack. 
3. Its local variables of type INTEGER or SET are allocated in registers (R11, R10, …) 

 
Fig. 6. Register usage in leaf procedures 

The measure by which leaf procedures can reduce code length is evident from the following 
short example. The code for four simple assignments is shown, first with normal compilation, 
and then with register variables. The number of instructions is reduced from 18 to 7; all memory 
accesses are eliminated. 

free 

temp 

local vars 

parameters 
R11 

R0 

RH 
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PROCEDURE P(x, y: INTEGER; VAR z: INTEGER); 
 VAR w: INTEGER; 
BEGIN w := 10; w := x+y; w := x DIV 16; z := (x+y)*(x-y) 
END P; 

   4  E3A0B00A MOV  R11 R0 10 
   5  E50CB010 STR  R11 FP -16 w 
   6  E51CB004 LDR  R11 FP -4 x 
   7  E51CA008 LDR  R10 FP -8 y 
   8  E09BB00A ADD  R11 R11 R10 x+y 
   9  E50CB010 STR  R11 FP -16 w 
  10  E51CB004 LDR  R11 FP -4 x 
  11  E1B0B24B MOV  R11 R0 R11 ASR  4 
  12  E50CB010 STR  R11 FP -16 w 

  13  E51CB004 LDR  R11 FP -4 x 
  14  E51CA008 LDR  R10 FP -8 y 
  15  E09BB00A ADD  R11 R11 R10 
  16  E51CA004 LDR  R10 FP -4 x 
  17  E51C9008 LDR  R9 FP -8 y 
  18  E05AA009 SUB  R10 R10 R9 
  19  E01B0B9A MUL  R11 R0 R11 R10 
  20  E51CA00C LDR  R10 FP -12 z 
  21  E58AB000 STR  R11 R10 0 

Code when P is compiled as leaf procedure: 
   3  E3A0000A MOV  R0 R0 10 w := 10 
   4  E09B000A ADD  R0 R11 R10 w := x+y 
   5  E1B0024B MOV  R0 R0 R11 ASR  4 w := x DIV 16 
   6  E09B800A ADD  R8 R11 R10 t0 := x+y 
   7  E05B700A SUB  R7 R11 R10 t1 := x-y 
   8  E0180897 MUL  R8 R0 R8 R7 t0 := t0 * t1 
   9  E5898000 STR  R8 R9 0 z := t0 

Leaf procedures and register variables seem to be innocent enough facilities to be 
implemented without hesitation. However, register variables are nastier to implement than 
expected. For example, if an addition is issued, the result typically replaces the arguments in 
the registers. But this cannot be in the case of arguments being register variables, because 
generally the variable’s values are not to be changed, and instead a temporary register must be 
allocated. If the store operation in turn stores into a register (variable), then the former 
assignment to a temporary register may be replaced. In fact, only the destination field in the 
add instruction need be changed. This sort of fixup is added to the OSAG.Store procedure, and 
is needed only for register variables. Another place where they require a special treatment is 
the for statement. Here we show the code for the example of Sect. 14 when part of a leaf 
procedure. The number of instructions in the loop is reduced from 10 to 4: 

PROCEDURE* P; 
 VAR i, n, k: INTEGER; 
BEGIN 
 FOR i := 1 TO n BY 2 DO k := k+i END 
END P 

   3  E3A00000 MOV  R0 R0 1 i := 1 
   4  E1500001 CMP  R0 R0 R1  
   5  CA000002 BGT        2 to 9 
   6  E0922000 ADD  R2 R2 R0 k := k+i 
   7  E2800002 ADD  R0 R0 2 i := i+2 
   8  EAFFFFFA BR        -6 to 4 

The third facility of array riders had been implemented on an earlier version of the Oberon-SA 
compiler, and it resulted in significant speedup for sequential access with arrays. However, we 
recognized that this situation occurs relatively rarely, whereas the compiler was made more 
complex for good. Consequently, we decided to drop that feature and will not further discuss it 
here. 
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23. Interrupt Procedures 

Interrupt handlers are simply parameterless procedures which are not invoked by regular 
procedure calls, but instead by interrupt signals breaking the normal instruction fetch sequence. 
Although the ARM switches to different PC and SP registers upon an interrupt, that is, 
effectively switches to a different stack, we need not bother about this. The only place where 
unfortunately code needs to be different from that of regular procedures is the return 
instruction. In this case, it must move not only the return address from the stack into the PC, 
but also reload the PSR. An offset value must be provided that is specific to each interrupt 
source. In Oberon-SA, this offset must be explicitly specified in the procedure declaration. The 
following example shows a rudimentary handler for the ARM’s IRQ interrupt. It merely 
increments a global counter. 

MODULE M; 
 IMPORT SYSTEM; 

 CONST IntVec = 18H; StkOrg = 800H; 
 VAR count: INTEGER; 

 PROCEDURE Handle [4]; 
 BEGIN INC(count) 
 END Handle; 

BEGIN count := 0; 
 SYSTEM.PUT(18H, (SYSTEM.ADR(Handle) - IntVec - 8) DIV 4 + 0EA000000H); 
 SYSTEM.LDPSR(0, 0D2H); SYSTEM.SP := StkOrg; (*set stack pointer*) 
 SYSTEM.LDPSR(0, 53H);  (*enable IRQ interrupt*) 
 ….. 
END M. 

   1  E92D5FFF STM  SP save registers on stack 
   2  E28DC030 ADD  FP SP 48 FP := SP + 12*4 
   3  E51FB018 LDR  R11 PC -24 INC(count) 
   4  E28BB001 ADD  R11 R11 1 
   5  E50FB020 STR  R11 PC -32 
   6  E24CD030 SUB  SP FP 48 SP := FP – 12*4 
   7  E8BD5FFF LDM  SP restore registers 
   8  E25EF004 SUB  PC LNK 4 special return (with offset = 4) 

  11  E3A0B000 MOV  R11 R0 0 entry of module body 
  12  E50FB03C STR  R11 PC -60 count := 0 

  13  E24FBF0E SUB  R11 PC 56 
  14  E25BBF06 SUB  R11 R11 24 
  15  E25BBF02 SUB  R11 R11 8 
  16  E1B0B14B MOV  R11 R0 R11 ASR  2 
  17  E59FA02C LDR  R10 PC 44 
  18  E05BB00A SUB  R11 R11 R10 
  19  E3A0AF06 MOV  R10 R0 24 
  20  E58AB000 STR  R11 R10 0 store at 18H 

  21  E3A0B0D2 MOV  R11 R0 210 
  22  E129F00B MSR  PC R9 R11 load program status register 
  23  E3A0DB02 MOV  SP R0 2048 
  24  E3A0B053 MOV  R11 R0 83 
  25  E129F00B MSR  PC R9 R11 load program status register 

The assignment of a branch instruction pointing to the handler to the interrupt location at address 
18H is performed using a PUT operator (from pseudo module SYSTEM) 

24. Import and Export 

From the point of view of system design, the module is the most essential structure. It defines 
not only a set of data types, variables and procedures, but it carries an interface, a restricted 
view of the module visible to other modules, so-called clients. The interface describes the set of 
all exported objects. In Oberon, objects to be exported are marked in their declaration by an 
asterisk (export mark). Modules cannot be nested. They must be considered as units in a 
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universe, and they can import objects exported by other, server modules. The imported 
modules are listed in the heading of each module. 

Modules cannot only be programmed in relative isolation from other modules, but they can also 
be compiled separately. However, if a module is compiled, the interfaces of all modules in its 
import list must be available in order to check for type consistency. This interface is provided in 
the form of a symbol file. The compiler generates a code file to be read by the loader, and a 
symbol file to be read by the compiler when compiling client modules. 

Therefore, the various modules of a system are compiled separately, but not independently. It 
is a cornerstone of safe system design that these interfaces are encoded rather than available 
as sections of source text that can be freely manipulated. In order to avoid version conflicts, 
code and symbol files carry a key which is checked whenever a symbol file is accessed. The 
procedures for generating and for reading a symbol file lie in module OSAB. 

24.1. Export, Generating a symbol file 

Generating a symbol file essentially consists of the linearisation of the data structure describing 
objects. The data structure, a list of Objects, is scanned, and marked objects are written to the 
file. Hence, a symbol file is an excerpt of the symbol table containing only the descriptions of 
exported objects. This excerpt is read by the importing compilation and added to its symbol 
table. 

Objects have types, and types are referenced by pointers. These cannot be written on a file. 
The straight-forward solution would be to use the type identifiers as they appear in the program 
to denote types. However, this would be rather crude and inefficient, and second, there are 
anonymous types, for which artificial identifiers would have to be generated. 

An elegant solution lies in consecutively numbering types. Whenever a type is encountered the 
first time, it is assigned a unique reference number. For this purpose, records of type Type 
contain the field ref. Following the number, a description of the type is then written to the 
symbol file. When the type is encountered again during the traversal of the data structure, only 
the reference number is issued. The global variable Ref in OSAB functions as the running 
reference number. 

A symbol file must not contain addresses (of variables or procedures). If they did, most 
changes in the program would result in a change of the symbol file. This must be avoided, 
because changes in the implementation (rather than the interface) of a module are supposed to 
remain invisible to the clients. Only changes in the interface are allowed to effect changes in 
the symbol file, requiring recompilation of all clients. Therefore, addresses are replaced by 
export numbers. The variable expno (local to OSAB.Export) serves as running number. The 
translation from export number to address is performed by the loader. Every code file contains 
a list (table) of addresses (entry points for procedures). The export number serves as index in 
this table to obtain the requested address. 

Export numbers are generated while writing the symbol file. They are not stored in the objects 
in the symbol table. However, it must be guaranteed that objects have the same numbers in the 
symbol file and in the code file. This “synchronization” is a somewhat subtle problem, and it 
might have simplified matters if the numbers would be stored in the objects explicitly. 

The syntax of symbol files follows from the syntax of the data structure of declared objects, i.e. 
from the syntax of declarations. 

SymFile  = key name versionkey {object}. 
object  = (CON name type form (value | expno) | TYP type [{fix} 0] | VAR name type expno). 
type  = ref [name [modname key]] ( PTR type | ARR type len | REC type {field} 0 | PROC type {param} 0]. 
field  = FLD name type offset. 
param  = (CON | VAR | PAR) type. 

If a type’s reference number r is negative, then –r designates the type which had already been 
output. A zero reference number signals an anonymous type. Procedures are considered to be 
constants of a procedural type, which is characterized by the types and number of parameters, 
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and in the case of a function, by its result type. The names of formal parameters need not be 
listed, as they are of no relevance except inside the procedure itself. The “value” of a procedure 
is its export number. Note that the syntax of object specifies a name for constants and 
variables, but not for types. This anomaly, as well as the sequence of fixes, will be explained 
later. 

The following example of a module with exported constants, types, variables, and procedures 
shows the resulting symbol file in an appropriately decoded form. #r precedes the specification 
of the type with reference number r. ^r is simply a reference to that type. (^3 refers to the 
standard type CHAR, ^4 to INTEGER, ^6 to SET, ^9 to no type). 

MODULE A; 
 CONST Ten* = 10; Dollar* = "$"; 
 TYPE R* = RECORD u*: INTEGER; v*: SET END ; 
  S* = RECORD w*: ARRAY 4 OF R END ; 
  P* = POINTER TO R; 
  A* = ARRAY 8 OF INTEGER; 
  B* = ARRAY 4, 5 OF REAL; 
  C* = ARRAY 10 OF S; 
  D* = ARRAY OF CHAR; 
 VAR x*: INTEGER; 
 PROCEDURE Q0*; 
 BEGIN END Q0; 
 PROCEDURE Q1*(x, y: INTEGER): INTEGER; 
 BEGIN RETURN x+y END Q1; 
END A. 

A 1CA7F2A6 
  CON Ten [^4]   10 
  CON Dollar [^3]   36 
  TYP [#14 R  form = REC [^9]  lev = 0  size = 8 { v [^6]  off = 4 u [^4]  off = 0}] 
  TYP [#15 S  form = REC [^9]  lev = 0  size = 32 { w [  form = 12 [^14]  len = 4  size = 32]  off = 0}] 
  TYP [#16 P  form = PTR [^14]] 
  TYP [#17 A  form = ARR [^4]  len = 8  size = 32] 
  TYP [#18 B  form = ARR [  form = ARR [^5]  len = 5  size = 20]  len = 4  size = 80] 
  TYP [#19 C  form = ARR [^15]  len = 10  size = 320] 
  TYP [#20 D  form = ARR [^3]  len = -1  size = 8] 
  VAR x [^4]    1 
  CON Q0 [  form = PROC [^9] ()]    2 
  CON Q1 [  form = PROC [^4] ( class = 2 [^4] class = 2 [^4])]    3 

24.2. Import, Reading a symbol file 

Importing a module causes a new module object to be inserted in the set of global objects. The 
reading of a symbol file is then guided by the syntax given above, and it causes the 
construction of a list of the read objects, anchored in the corresponding module object. The 
parser is based on the principle of recursive descent. 

The process of translating reference numbers back to pointers uses an array of pointers to 
records of type Type. When a positive number r is read, the subsequent type description is 
read and results in a data structure. The pointer to it is assigned to typdesc[r]. This array is 
declared globally in OSAB. (It could in fact be declared local to procedure Import). In later 
readings of reference numbers (with negative values), the reference is taken from typdesc[r]. 

This looks all reasonably straight-forward. However, there is one circumstance that complicates 
the program considerably. It is the fact that imported types can be re-exported. Consider the 
example: 

MODULE A; 
 TYPE T* = RECORD x: INTEGER END ; 
END A. 

MODULE B; 
 IMPORT A; 
 PROCEDURE P*(VAR t: A.T); 
 END P; 
END M01. 



 36

MODULE C; 
 IMPORT B; 
 VAR r: A.T; 
BEGIN B.P(r) 
END C. 

Module C imports type T directly from A, but also indirectly from B through the parameter t of 
procedure P. When compiling C it is necessary to determine that the formal parameter of B.P 
and the actual parameter r are indeed of the same type. A crude solution would be to let the 
symbol file of B contain that of A. However, this would lead to the undesirable fact that typically 
a symbol file would contain all files of all modules of a whole system. The solution rather lies in 
duplicating only the description of the very type that is to be re-exported. However, when 
exported, this type need be attached to its name. It is therefore mandatory to export the type’s 
name together with the type’s description. (This is the reason for the syntactic anomaly 
mentioned above: The name is attached to the type rather than the object in the symbol file). 
The decoded symbol file of module B is shown below: 

CON P [form = PROC [^9]( class = PAR [#14 A.T 0A004B5C  form = REC [^9]  lev = 0  size = 4 {}])]    1 

When a (named) type description is read, a search determines whether the same module is 
already present. If it is present, the type object is searched in the existing list. If the given type 
is present, the new input is discarded. This is important in order to recognize that two imports 
are of the same type. Type equality is determined through the equality of the pointers referring 
to the compared type descriptors. 

In fact, it is possible that the import of a module remains completely hidden. Consider the 
example where an implicit reference to a type T in a module A occurs in two modules, say B1 
and B2, and where both modules are imported by yet another module C.  The compatibility, in 
fact the identity, of the types of variables p0 and p1 can be established thanks to their types 
referring to A. 

MODULE B1; 
 IMPORT A; 
 TYPE T* = PROCEDURE (VAR u: A.T); 
END B1. 

MODULE B2; 
 IMPORT A; 
 TYPE T* = PROCEDURE (VAR u: A.T); 
END M03. 

MODULE C; 
 IMPORT B1, B2; (*twice hidden import of A.T*) 
 VAR p0: B1.T;  p1: B2.T; 
BEGIN p0 := p1 
END C. 

The symbol file of B1 is 
  TYP [#14 T  form = PROC [^9]( class = PAR [#15 A.T 0600C360  form = REC [^9]  lev = 0  size = 4 { x [^4]  off = 0}])] 

If a type is imported again and then discarded, it is mandatory that this occurs before a 
reference to it is established elsewhere. This implies that types must always be defined before 
they are referenced. Fortunately, this requirement is fulfilled by the language and in particular 
by the one-pass strategy of the compiler. However, there is one exception, namely the 
possibility of forward referencing a record type in a pointer declaration, allowing for recursive 
data structures: 

TYPE P = POINTER TO R; 
 R = RECORD x, y: P END 

Hence, this case must be treated in an exceptional way, i.e. the definition of P must not cause 
the inclusion of the definition of R, but rather cause a forward reference in the symbol file. Such 
references must by fixed up when the pertinent record declaration had been read. This is the 
reason for the term {fix} in the syntax of (record) types. Furthermore, the recursive definition 

TYPE P = POINTER TO RECORD x, y: P END 
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suggests that the test for re-import must occur before the type is established, i.e. that the type’s 
name must precede the type’s description in the symbol file, where the arrow marks the fixup.: 

TYP [#14 P  form = PTR [^1]] 
TYP [#15 R  form = REC [^9]  lev = 0  size = 8 { y [^14]  off = 4 x [^14]  off = 0}]  → 14 

Modules may be imported and given a different name (alias) from the one they have in the 
environment. For example, 

IMPORT M0 := M1 

imports module M1 and associates the local name M0 with it, i.e. the identifier M0 is used as 
usual, but the file with name M1 is read. 

From these brief explanations is should be evident that the implementation of the module 
concept together with that of separate compilation is the most complex and most sophisticated 
part of the entire compiler. Its proper solution was by no means obvious, and it even caused an 
extensive redesign of the handling of import and export, including a new definition of the format 
of symbol files after a considerable period of usage. 

25. Loading and Linking 

Code files contain the compiled instruction sequences. At the beginning stand the module 
name (a string terminated by 0X) and the module key (4 bytes). They are followed by triples, 
one per imported module, consisting of the imported modules’ name, key, and a fixup anchor. 
This sequence of triples is terminated by a zero byte. Then follows the sequence of commands, 
the sequence of entry points, and finally the code. The syntax of code files is: 

CodeFile  =  modname key 
{importname key anchor} 0 
{commandname entry} 0 
nofentries {entry} 
datasize codesize {code}. 

After allocating memory in sequential fashion, the linker finalizes the addresses of instructions 
referring to imported objects. For every import, the instructions pointing to an object of this 
module are linked by a chain, whose anchor was read together with the individual modules’ 
names and keys. The links of this (fixup) chain are located in the address fields of the linked 
instructions. 

There are two kinds of external references. The first and more frequent one is for procedures. 
In their 24-bit address (offset) field lies the link (16 bits) and the export number (8 bits) of the 
called procedure. The latter is used as index in the entry address table read at the beginning of 
the file. The actual offset value is obtained from this entry offset and the difference of the base 
addresses of the referencing and the referenced module. 

The second kind of external reference is for variables, string constants, and type descriptors. In 
this case, access is always indirectly. The compiler allocates a word in the area for constants, 
into which the linker places the direct absolute address of the object to be referenced. Like for 
procedures, it is obtained from the entry offset and the difference of the module bases. 

The two kinds of elements of the chain are distinguished through the word’s “opcode” byte, 
which is a BL in the case of references to procedures, and zero in the case of variables and 
type descriptors. 

This simple strategy of linking and loading is very efficient. It rests on the premise that a system 
maintains a chain of loaded module descriptors, to which new modules are added on demand. 
It guarantees that no module occurs more than once. The three page program makes use of 
recursion. 

26. Miscellaneous Topics 

In this chapter we add some comments on various features that seem to need exceptional 
treatment, because they do not fit well into a simple, regular structure, yet are found to be 
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indispensable, convenient, or merely conventional. This compiler implementor could very well 
have done without them. 

26.1. Record and Pointer Types 

Oberon clearly distinguishes between records and pointers to records, between direct and 
indirect access. This is of great value for the conceptual clarity so important in teaching. It 
requires that there are separate declarations for record and pointer types, as shown in the 
subsequent example: 

TYPE R = RECORD a, b: INTEGER END ; 
 P = POINTER TO R 

This distinction is also reflected in the denotation of pointers and referenced records: If p denotes 
a pointer variable, then p stands for its pointer value, whereas p^ stands for the dereferenced 
record and p^.b for its field b. As this combination of dereferencing and field selection occurs very 
frequently, the Oberon rules allow the abbreviation p.b. This adds a single statement to the 
compiler, but the programmer must keep in mind that it includes an abbreviation. 

In the majority of cases, however, a single type identifier in place of P and R would indeed suffice, 
for example if all instantiations of records are dynamic, and hence all records are referenced via 
pointers. In this case, Oberon allows to let the record type remain anonymous: 

TYPE P = POINTER TO RECORD a, b: INTEGER END 

This looks all very well. But in the case of a record extension, it is the record and not the pointer 
which is extended, and therefore a name for the record type is necessary. Again, the rules of 
Oberon help with an abbrevaition. It is, for example, possible to specify, using P0 instead of R0 

TYPE P0 = POINTER TO RECORD a, b: INTEGER END 
TYPE P1 = POINTER TO RECORD (P0) c, d: INTEGER END 

 

The two abbreviations described in the preceding section are convenient, and fortunately do not 
add complexity to the compiler in a noticeable degree. A few statements suffice. Nevertheless, 
they represent an exception in the regular structure of the languages and the compiler, the sort of 
things that should be avoided for obtaining a regular design.  

26.2. Type descriptors 

It was another subtle case that for some time caused difficulties: Typically, a record type needs to 
have its own identity. Any dynamic allocation scheme requires that types have a descriptor (at 
run-time) that indicates the type’s size. If a garbage collector is to be present, then much more 
(meta) information is needed, such as the offsets of all pointers. Another instance requiring the 
availability of type descriptors (TDs) is the concept of type extension. The descriptors must 
display the hierarchy of the related types. The identity of each type is established by the unique 
address of its descriptor. 

For a long time we believed that record types not connected with pointers (dynamic allocation) 
nor extensions (type hierarchies) could do without TDs, and that the compiler should not allocate 
a superfluous TD in these cases. The chosen solution was to always associate a TD with a 
record type, but to use during compilation the object record associated with the type for holding 
the TD’s address. Hence, the record of type Object not only contains the name of the type, but 
also identifies its descriptor as a variable. This was given up later, recognizing that the descriptor 
conceptually belongs to the type rather than the (named) object. The descriptor itself is allocated 
in the heading of the code section, and descriptors are always treated as global variables. 

P0 (R0)

P1 (R1)
base 

dsc 

base 
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26.3. Forward references 

Another feature falling into the same class is that of forward references. In Oberon they exist for 
two kinds of objects. The first is for procedures. It is required if procedures refer to each other. In 
simple cases such as 

PROCEDURE P(x: INTEGER); 
BEGIN … Q(x-1) …  (*forward reference*) 
END P; 

PROCEDURE Q(x: INTEGER); 
BEGIN … P(x-1) … 
END Q; 

nesting will solve the problem: 
PROCEDURE P(x: INTEGER); 

PROCEDURE Q(x: INTEGER); 
BEGIN … P(x-1) … 
END Q; 

BEGIN … Q(x-1) … 
END P; 

In more complicated situations, the introduction of a procedure variable will provide the solution, 
although it may appear as heavy. In any case, we have decided not to implement a forward 
declaration facility for the current time, as it is rarely needed and awkward to implement in a 
single-pass compiler. 

The second instance of a forward reference is for pointer types, where recursive relations are 
frequent, as shown in the following example: 

TYPE T = POINTER TO RECORD x: INTEGER; y: T END 

However, the declaration 
TYPE T = RECORD x: INTEGER; y: T END 

must be detected as an error. Of greater relevance is the case with mutual reference, such as 
TYPE P0 = POINTER TO RECORD a: P0; b: P1 END ; 
 P1 = POINTER TO RECORD a: P0; b: P1 END ; 

Here a forward declaration is the only possible remedy: 
TYPE P0 = POINTER TO R0;  (*forward*) 

P1 = POINTER TO R1;  (*forward*) 
 R0 = RECORD a: P0; b: P1 END ; 
 R1 = RECORD a: P0; b: P1 END ; 

A solution for its implementation is not difficult to find. Yet, it is an exceptional facility cutting 
through regular structures, and not without the possibility of unforeseen consequences. We use 
the form NoTyp to stand for the still unknown base of a pointer type, which is later replaced when 
the actual base type is declared. This implies that the necessity of updating (fixing up) the missing 
base entry must be recognized. In order to avoid undue complication, we require that a pointer 
and its associated record type must be defined within the same scope. Therefore, undefined 
pointer bases can be retained in a table, which at the end of the current declaration section is 
scanned. An error is indicated, if the table remains not empty. Details are to be looked up in the 
source text (procedure OSAP.Declarations). 

26.4. Open Arrays 

Open arrays require a treatment different from other arrays only for index bound checking. This is 
because the bound is not known. It is not a constant, but a variable. Therefore, the length of the 
array parameter is passed along with the array address, occupying a second register. This 
represents an exception of the pleasant rule that every procedure parameter occupies a single 
register, just as in the case of record parameters. Since registers are allocated from higher to 
lower numbers, and because it is possible to generate the array length only after parsing the 
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designator, the array length is placed in the register below the address, and similarly for the array 
parameter stored in memory. The only other case, where a parameter occupies two words is the 
record, where the second word contains the address of the record’s type descriptor. 

 

26.5. Export of variables 

The export of variables is a questionable practice. The important principle of information hiding 
demands that only constants be exported. Types and procedures are also considered to be 
constants. Variables inside a module will be manipulated indirectly by calling exported procedures 
rather than by direct access. This principle allows to postulate invariants for the module, and to 
guard them effectively. 

Both Modula and Oberon allow to export variables, thus counteracting against a sound principle 
of software design. Oberon-2 allowed the specification that a variable would be exported in read-
only mode, thus making it a constant in the module’s environment, and an earlier version of 
OberonSA strictly forbade the export of variables. We decided to stick to this rule, but to allow for 
exceptions. We do allow the export of variables of basic, scalar types and of pointers, in read-only 
mode. This measure avoids the necessity of trivial function procedures for merely inspecting the 
variable’s value. The export of structured variables is not permitted. 

26.6. Coping with syntactic errors 

Coping with syntactically ill-formed text is an art in itself. There are no fixed rules; heuristics 
govern the subject. The programmer, however, expects helpful error diagnostics. A basic 
requirement is that the compiler does not crash, that it “survives” any misformed text. A good 
strategy to meet this requirement is to design the parser first and fill in the necessary additions for 
error handling. This guarantees that incorrect syntax is at least discovered, even if not optimally 
diagnosed. The temptation to modify the basic parser in order to accommodate “frequent 
programming mistakes” is large, but it easily leads to certain syntax errors being accepted without 
complaint. 

The advice to leave the basic parser untouched also applies to the handling of other errors, in 
particular type errors. If, for example, a decision can be taken either on the ground of syntax 
(what is the next symbol?) or on type information, then the former is recommended. There are, in 
Oberon, a few instances, however, where type information is used for parsing. For example, a 
statement starting with an identifier is an assignment, if the identifier denotes a variable, or a call, 
if it denotes a procedure. Fortunately, however, these cases are very few. 

There is no limit in spending efforts for elegant error recovery, and therefore the temptation to go 
far in order to please the programmer is big. The effect is that the entire compiler becomes bulky 
and slow. In fact it is surprising how large a part of the compiler goes into coping with errors, be 
they syntactic or about type mismatch. I have never shown extreme sympathy with programmers 
who do not cope with simple language rules. Sophisticated error recovery and diagnostics will 
merely honor their carelessness, and keep them from learning the rules. The amount of effort a 
compiler designer invests in this subject is largely a matter of taste and opinion. Only wisdom 
imposes limits. 

26.7. Run-time traps 

Similar considerations can be made regarding run-time errors. Many experts say that a language 
establishes a set of abstractions and rules governing them, and that any violation of them must 
be detected and reported. This is a heavy burden, and good languages let this task be handled 
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by the compiler, so that it complicates “only” the compiler. However, some limitations imposed by 
the abstraction can only be detected when executing the program. The cases at hand are: 

1. array index out of bounds 
2. type guard violation 
3. length of destination array too small for assignment 
4. case value out of defined range 
5.  
6. string too long for assignment 
7. division by zero 

In early languages, there were no such checks at run-time. But in the meantime programmers 
have slowly learned to appreciate the usefulness of such checks. Yet, they cost efficiency, and 
therefore have been questioned. Indeed, they are useless and detrimental to the perfect program. 
Therefore it was suggested that there should be a compiler switch for turning the generation of 
run-time checks on or off. They would be turned on as long as a program is tested, and turned off 
thereafter. But when does a program leave its testing phase? And it is after the testing phase, 
when the program is “in the field”, when errors become most dangerous and costly. 

In any case, the code for checks must be as short and unobtrusive as possible. This compiler 
meets this requirement admirably well, as can be seen from the following examples. The 
availability of a conditional trap instruction SWI is most helpful: 

MODULE M; 
 TYPE R0 = RECORD x: INTEGER END ; 
  R1 = RECORD (R0) y: INTEGER END ; 
  P1 = POINTER TO R1; 
 VAR i, k: INTEGER; 
  p: POINTER TO R0; 
  A: ARRAY 8 OF INTEGER; 

 PROCEDURE P(VAR a: ARRAY OF INTEGER); 
  VAR b: ARRAY 8 OF INTEGER; 
 BEGIN b := a 
 END P; 

BEGIN 
 CASE k: 2 OF 
  | 0: k := A[i]; 
  | 1: k := p(P1).x; 
 END 
END M. 
 
  10  E24CBF0A SUB  R11 FP 40 b := a 
  11  E51CA004 LDR  R10 FP -4 
  12  E51C9008 LDR  R9 FP -8 
  13  E3590008 CMP  R0 R9 8 LEN(a) >= LEN(b) 
  14  CF000003 SWI  array length check 

  23  E51FB06C LDR  R11 PC -108 
  24  E35B0003 CMP  R0 R11 2 0 <= k < 2 
  25  308FF10B ADD  PC PC R11 LSL  2 branch indexed 
  26  EF000004 SWI  case check 

  30  E51FB084 LDR  R11 PC -132 
  31  E35BBF02 CMP  R11 R11 8 0 <= i < 8 
  32  2F000001 SWI  index check 

  37  E51FB0A8 LDR  R11 PC -168 p 
  38  E51BA004 LDR  R10 R11 -4 
  39  E59AA004 LDR  R10 R10 4 
  40  E24F9F26 SUB  R9 PC 152 TD(P1) 
  41  E15A0009 CMP  R0 R10 R9 
  42  1F000002 SWI  type guard 

A detail is worth while being pointed out. Because in Oberon the lower bound of array indices is 
fixed at zero, a single comparison will suffice to test both lower and upper bound, if the index is 
interpreted as an unsigned integer. 
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26.8. “Optimizations” 

The terms optimization and to optimize are frequently abused in the field of computing. 
Improvement and to improve would be more honest terms. To reach for the optimum is often 
unwise and expensive. However, we will here bow to tradition and use this established term. 

Where an effort should be made to improve code, that is, where to improve the compiler’s code 
generators, is an open question. It depends largely on the features of the target computer’s 
instruction set. It may also feature instructions to improve efficiency. In general, one should 
investigate the frequency with which a feature is used before embarking on an optimization trip. 
RISC architectures usually do not offer many such instances, as in principle the instructions set is 
supposed to be minimal and can rarely be further shortened. 

We have adopted one simple rule for the choice of optimizations: Restrict optimizations to cases, 
where the programmer has no means to avoid the construct. But we will not bother to improve 
code, when the programmer could do this by programming differently. For example, this compiler 
does not “optimize” in the following cases: 

x := x + 0 x := x * 1 x := x 
x = x x < x  
ASSERT(TRUE) ODD(0) 

However, the compiler evaluates expressions consisting of integer constants only. This is 
necessary, because such expressions may occur in declarations, for example, in specifying an 
array length. Care has to be taken against overflow, as the compiler must never crash. This is 
also the reason why we do not bother about constant expression evaluation in the case of type 
REAL. 

Noteworthy because highly effective is the use of shift instructions for multiplication and division 
by integer constants that are powers of 2. Obviously, the compiler needs to check for such 
exceptional cases for every multiplication and division. The use of shifts for multiplication by a 
constant is particularly beneficial in combination with register variables, as the following example 
shows: 

MODULE M; 
 PROCEDURE* P; 
  VAR i, k: INTEGER; 
 BEGIN k := 2*i; k := 3*i; 
  k := 9*i + i;  (* 10*i *) 
  k := i*5 * 2  (* 10*i *) 
 END P; 
END M. 

   3  E1B01080 MOV  R1 R0 R0 LSL  1 k := 2*i 
   4  E0901080 ADD  R1 R0 R0 LSL  1 k := 3*i 
   5  E090B180 ADD  R11 R0 R0 LSL  3 
   6  E09B1000 ADD  R1 R11 R0 k := 8*I + i  (= 10*i) 
   7  E090B100 ADD  R11 R0 R0 LSL  2 
   8  E1B0108B MOV  R1 R0 R11 LSL  1 k := 2*(4*I + i)  (= 10*i) 

But most important are optimizations in address generation, where the programmer has no 
means to improve code. Such improvements are relatively easy to implement, because they are 
local. The same holds for assignment of the null string. Instead of s := “”, the statement s[0] := 0X 
is emitted. Hence, the code for a loop is avoided. 

We end this section about optimization with a few examples, where the code appears as 
“suboptimal”, but where we do not bother to improve it, knowing that these cases occur rarely. It 
concerns BOOLEAN expressions and assignments, which are a special case defying the 
conventional rules of expression evaluation, and involving the special register called condition 
code. In the case of variables, the truth values are represented by 0 and 1, stored in a single 
byte, in fact by its least bit. As soon as BOOLEAN operators are involved, the condition code 
register becomes involved: 

p := p & q 
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  16  E55FB04A LDRB  R11 PC -74 q    
  17  E35B0000 TST  R0 R11 1 test bit 0 only 
  18  0A000002 BEQ        2 to 22 
  19  E55FB055 LDRB  R11 PC -85 p 
  20  E35B0000 TST  R0 R11 1 
  21  1A000001 BNE        1 to 24 
  22  E3A0B000 MOV  R11 R0 0 
  23  EA000000 BR         2 to 25 
  24  E3A0B001 MOV  R11 R0 1 TRUE 
  25  E54FB06D STRB  R11 PC -109 p 

Evidently, this simple assignment results in a rather cumbersome code sequence. The lesson is 
to use Boolean variables sparingly. A shortcut is used by the compiler, however, if a simple 
variable (or a constant) is negated. It is a rare case where we make use of the ARM’s facility of 
conditional execution of single instructions. 

p := ~q; p := ~TRUE; 

   7  E55FB026 LDRB  R11 PC -38 q 
   8  E35B0000 TST  R0 R11 1 
   9  03A0B001 MOV  R11 R0 1 
  10  13A0B000 MOV  R11 R0 0 
  11  E54FB035 STRB  R11 PC -53 p 
   
  12  E1500000 CMP  R0 R0 R0 TRUE 
  13  13A0B001 MOV  R11 R0 1 
  14  03A0B000 MOV  R11 R0 0 
  15  E54FB045 STRB  R11 PC -69 p 

This last example looks queer and is, of course, a pathological case. Because the ARM does not 
allow for a condition FALSE (never), it (and with it also its negation) has to be generated 
“artificially”. This is done by comparing a register with itself. This is, of course, not the only 
instance where a compiler must cope with pathological constructs! 

27. Interface Definitions 
DEFINITION OSAS;  (*the Scanner*) 
 CONST IdLen* = 32; 
  (*lexical symbols*) 
  times* = 1; rdiv* = 2; div* = 3; mod* = 4; 
  and* = 5; plus* = 6; minus* = 7; or* = 8; eql* = 9; 
  neq* = 10; lss* = 11; leq* = 12; gtr* = 13; geq* = 14; 
  in* = 15; is* = 16; arrow* = 17; period* = 18; 
  char* = 20; int* = 21; real* = 22; false* = 23; true* = 24; 
  nil* = 25; string* = 26; not* = 27; lparen* = 28; lbrak* = 29; 
  lbrace* = 30; ident* = 31; if* = 32; case* = 33; while* = 34; 
  repeat* = 35; for* = 36; 
  comma* = 40; colon* = 41; becomes* = 42; upto* = 43; rparen* = 44; 
  rbrak* = 45; rbrace* = 46; then* = 47; of* = 48; do* = 49; 
  to* = 50; by* = 51; semicolon* = 52; end* = 53; bar* = 54; 
  else* = 55; elsif* = 56; until* = 57; return* = 58; 
  array* = 60; record* = 61; pointer* = 62; const* = 63; type* = 64;  

 TYPE Ident* = ARRAY IdLen OF CHAR; 
 VAR ival*, slen*: LONGINT;  (*results of Get*) 
  rval*: REAL; 
  id*: Ident;  (*for identifiers*) 
  str*: ARRAY 60 OF CHAR;  (*for strings*) 
  errcnt*: INTEGER; 

 PROCEDURE CopyId*(VAR ident: Ident); 
 PROCEDURE Mark*(msg: ARRAY OF CHAR); 
 PROCEDURE Get*(VAR sym: INTEGER); 
 PROCEDURE Init*(T: Texts.Text; pos: LONGINT); 
END OSAS. 

DEFINITION OSAB;  (*basis of data type definitions*) 
 CONST versionkey = -1; 
  (* class values*) Head = 0; 
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   Const = 1; Var = 2; Par = 3; Fld = 4; Ty* = 5; 
   SProc = 6; Mod = 7; Reg = 8; RegI = 9; 

  (* form values*) 
   Byte = 1; Bool = 2; Char = 3; Int = 4; Real = 5; Set = 6; 
   Pointer = 7; NilTyp = 8; NoTyp = 9; Proc = 10; 
   String = 11; Array = 12; Record = 13; 

 TYPE Object = POINTER TO ObjDesc; 
  Type = POINTER TO TypeDesc; 

  ObjDesc= RECORD 
   class, lev: INTEGER; 
   expo, rdo: BOOLEAN;   (*exported, read-only*) 
   next, anc: Object; 
   type: Type; 
   name: OSAS.Ident; 
   val: LONGINT 
  END ; 

  TypeDesc = RECORD 
   form, ref: INTEGER;  (*ref is only used for import/export*) 
   nofpar: INTEGER;  (*for procedures, extension level for records*) 
   len: LONGINT;  (*for arrays, len < 0 => open*) 
   dsc, typobj*: Object; 
   base: Type;  (*for arrays, records, pointers*) 
   size: LONGINT  (*in bytes; always multiple of 4, except for Bool and Char*) 
  END ; 

 VAR topScope, guard: Object; 
  byteType, boolType, charType: Type; 
  intType, realType, setType, nilType, noType, strType: Type; 

 PROCEDURE NewObj(): Object; (*insert new Object with name OSAS.id*) 
 PROCEDURE this(): Object;  (*return the Object with name OSAS.id*) 
 PROCEDURE thisimport(mod: Object): Object; 
 PROCEDURE thisfield(rec: Type): Object; 
 PROCEDURE OpenScope; 
 PROCEDURE CloseScope; 
 PROCEDURE MakeFileName(VAR name, FName: OSAS.Ident; ext: ARRAY OF CHAR); 

 PROCEDURE Import(VAR modid, modid1: OSAS.Ident); 
 PROCEDURE Export(VAR modid: OSAS.Ident; 
END OSAB. 

DEFINITION OSAG;   (*code genertor*) 
 CONST WordSize = 4; FP = 12; MaxCase = 256; 

 PROCEDURE FixLink(L0: LONGINT); 
 PROCEDURE AllocString(VAR adr: LONGINT); 
 PROCEDURE AllocTD(tp: OSAB.Type); 
 PROCEDURE Val(VAR x: Item): LONGINT; 
 PROCEDURE Lev(VAR x: Item): LONGINT; 
 PROCEDURE MakeConstItem(VAR x: Item; typ: OSAB.Type; val: LONGINT); 
 PROCEDURE MakeRealItem(VAR x: Item; val: REAL); 
 PROCEDURE MakeStringItem(VAR x: Item; VAR str: ARRAY OF CHAR); 
 PROCEDURE MakeItem(VAR x: Item; y: OSAB.Object); 

 PROCEDURE Field(VAR x: Item; y: OSAB.Object);   (* x := x.y *) 
 PROCEDURE Index(VAR x, y: Item; check: BOOLEAN);   (* x := x[y] *) 
 PROCEDURE DeRef(VAR x: Item); 
 PROCEDURE TypeTest(VAR x: Item; T: OSAB.Type; varpar, isguard: INTEGER); 

 PROCEDURE And1(VAR x: Item);   (* x := x & *) 
 PROCEDURE And2(VAR x, y: Item); 
 PROCEDURE Or1(VAR x: Item);   (* x := x OR *) 
 PROCEDURE Or2(VAR x, y: Item); 
 PROCEDURE Neg(VAR x: Item);   (* x := -x *) 
 PROCEDURE AddOp(op: INTEGER; VAR x, y: Item);   (* x := x op y *) 
 PROCEDURE MulOp(VAR x, y: Item);   (* x := x * y *) 
 PROCEDURE DivOp(op: INTEGER; VAR x, y: Item);   (* x := x op y *) 
 PROCEDURE PrepOpd(VAR x: Item; op: INTEGER; VAR rst: SET); 
 PROCEDURE RealOp(op: INTEGER; VAR x, y: Item; rst: SET);   (* x := x op y *) 
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 PROCEDURE Singleton(VAR x, y: Item);  (* x := {y} *) 
 PROCEDURE Set(VAR x, y, z: Item);   (* x := {y .. z} *) 
 PROCEDURE In(VAR x, y: Item);  (* x := x IN y *) 
 PROCEDURE SetO(op: INTEGER; VAR x, y: Item);   (* x := x op y *) 

 PROCEDURE IntRelation(op: INTEGER; VAR x, y: Item);   (* x := x < y *) 
 PROCEDURE SetRelation(op: INTEGER; VAR x, y: Item);   (* x := x < y *) 
 PROCEDURE RealRelation(op: INTEGER; VAR x, y: Item);   (* x := x < y *) 
 PROCEDURE StringRelation(op: INTEGER; VAR x, y: Item);   (* x := x < y *) 

 PROCEDURE PrepStore(VAR x: Item); 
 PROCEDURE Store(VAR x, y: Item); (* x := y *) 
 PROCEDURE CopyRecord(VAR x, y: Item);  (* x := y *) 
 PROCEDURE CopyArray(VAR x, y: Item);  (* x := y *) 
 PROCEDURE CopyString(VAR x, y: Item);  (* x := y *) 

 PROCEDURE VarParam(VAR x: Item; ftype: OSAB.Type); 
 PROCEDURE ValueParam(VAR x: Item); 
 PROCEDURE StringParam(VAR x: Item); 
 PROCEDURE ByteParam(VAR x: Item);  (*formal param of type SYSTEM.BYTES*) 

 PROCEDURE CaseHead(VAR x: Item; VAR L0, L1: LONGINT); 
 PROCEDURE CaseTail(VAR ctab: ARRAY OF LONGINT; L0, L1, max: LONGINT); 
 PROCEDURE For0(VAR x, y: Item); 
 PROCEDURE For1(VAR x, y, z, w: Item; VAR L: LONGINT); 
 PROCEDURE For2(VAR x, y, w: Item); 

 PROCEDURE Here(VAR L: LONGINT); 
 PROCEDURE FJump(VAR L: LONGINT); 
 PROCEDURE CFJump(VAR x: Item); 
 PROCEDURE BJump(L: LONGINT); 
 PROCEDURE CBJump(VAR x: Item; L: LONGINT); 
 PROCEDURE Fixup(VAR x: Item); 
 PROCEDURE PrepCall(VAR x: Item; VAR rst: SET); 
 PROCEDURE Call(VAR x: Item; rst: SET); 
 PROCEDURE Header; 
 PROCEDURE Enter(leaf, int: BOOLEAN; level: INTEGER; regvarno, parsize, varsize: LONGINT); 
 PROCEDURE Return(leaf, int: BOOLEAN; offset, form: INTEGER; VAR x: Item); 

 PROCEDURE Increment(upordown: LONGINT; VAR x, y: Item); 
 PROCEDURE Assert(VAR x, y: Item); 
 PROCEDURE New(VAR x, y: Item); 
 PROCEDURE Pack(VAR x, y: Item); 
 PROCEDURE Unpk(VAR x, y: Item); 
 PROCEDURE Get(VAR x, y: Item); 
 PROCEDURE Put(VAR x, y: Item); 
 PROCEDURE PSR(op: LONGINT; VAR msk, x: Item);  (*Program Status Reister*) 
 PROCEDURE CPR(op: LONGINT; VAR cpno, cpreg, x: Item);  (*Coprocessor Register*) 
 PROCEDURE Flush(VAR x: Item);  (*flush caches*) 
 PROCEDURE AddC(VAR x, y, z: Item); 
 PROCEDURE MulD(VAR x, y, z: Item); 

 PROCEDURE Abs(VAR x: Item); 
 PROCEDURE Odd(VAR x: Item); 
 PROCEDURE Floor(VAR x: Item; rst: SET); 
 PROCEDURE Float(VAR x: Item; rst: SET); 
 PROCEDURE Ord(VAR x: Item); 
 PROCEDURE Len(VAR x: Item); 
 PROCEDURE Shift(fct: LONGINT; VAR x, y: Item); 
 PROCEDURE Adr(VAR x: Item); 
 PROCEDURE Bit(VAR x, y: Item); 
 PROCEDURE Xor(VAR x, y: Item); 
 PROCEDURE Overflow(VAR x: Item); 
 PROCEDURE Null(VAR x: Item);    (*must be register variable*) 

 PROCEDURE CheckRegs; 
 PROCEDURE Open; 
 PROCEDURE Close(VAR modid: OSAS.Ident; key, datasize: LONGINT); 
END OSAG. 



 46

DEFINITION OSAP;   (*parser*) 
 PROCEDURE Compile; 
END OSAP. 

References 

N. Wirth and J. Gutknecht. Project Oberon. Addison-Wesley, 1992. ISBN 0-201-54428-8 
N. Wirth. Compiler Construction. Addison-Wesley, 1996. ISBN 0-201-40353-6 
-  Grundlagen und Techiken des Compilerbaus. Addison-Wesley, 1996. ISBN 3-98319-931-4 


